These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34304235)

  • 1. Cardiac Output Assessments in Anesthetized Children: Dynamic Capnography Versus Esophageal Doppler.
    Karlsson J; Svedmyr A; Wiegele M; Lönnqvist PA; Wallin M; Hallbäck M
    Anesth Analg; 2022 Mar; 134(3):644-652. PubMed ID: 34304235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of capnodynamic determination of cardiac output by measuring effective pulmonary blood flow: a study in anaesthetised children and piglets.
    Karlsson J; Winberg P; Scarr B; Lönnqvist PA; Neovius E; Wallin M; Hallbäck M
    Br J Anaesth; 2018 Sep; 121(3):550-558. PubMed ID: 30115252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between capnodynamic and thermodilution method for cardiac output monitoring during major abdominal surgery: An observational study.
    Sigmundsson TS; Öhman T; Hallbäck M; Suarez-Sipmann F; Wallin M; Oldner A; Hällsjö-Sander C; Björne H
    Eur J Anaesthesiol; 2021 Dec; 38(12):1242-1252. PubMed ID: 34155171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage.
    Hällsjö Sander C; Hallbäck M; Suarez Sipmann F; Wallin M; Oldner A; Björne H
    Acta Anaesthesiol Scand; 2015 Sep; 59(8):1022-31. PubMed ID: 26041115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation.
    Hällsjö Sander C; Hallbäck M; Wallin M; Emtell P; Oldner A; Björne H
    Br J Anaesth; 2014 May; 112(5):824-31. PubMed ID: 24554544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capnodynamic determination of cardiac output in hypoxia-induced pulmonary hypertension in pigs.
    Karlsson J; Wallin M; Hallbäck M; Lönnqvist PA
    Br J Anaesth; 2019 Mar; 122(3):335-341. PubMed ID: 30770051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified breathing pattern improves the performance of a continuous capnodynamic method for estimation of effective pulmonary blood flow.
    Sander CH; Sigmundsson T; Hallbäck M; Sipmann FS; Wallin M; Oldner A; Björne H
    J Clin Monit Comput; 2017 Aug; 31(4):717-725. PubMed ID: 27251701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a capnodynamic method estimating effective pulmonary blood flow during transient and sustained hypercapnia.
    Sigmundsson TS; Öhman T; Hallbäck M; Redondo E; Sipmann FS; Wallin M; Oldner A; Hällsjö Sander C; Björne H
    J Clin Monit Comput; 2018 Apr; 32(2):311-319. PubMed ID: 28497180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ability of esCCO and ECOM Monitors to Measure Trends in Cardiac Output During Alveolar Recruitment Maneuver After Cardiac Surgery: A Comparison with the Pulmonary Thermodilution Method.
    Thonnerieux M; Alexander B; Binet C; Obadia JF; Bastien O; Desebbe O
    Anesth Analg; 2015 Aug; 121(2):383-91. PubMed ID: 25902321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical ventilation with positive end-expiratory pressure in critically ill patients: comparison of CW-Doppler ultrasound cardiac output monitoring (USCOM) and thermodilution (PiCCO).
    Horster S; Stemmler HJ; Sparrer J; Tischer J; Hausmann A; Geiger S
    Acta Cardiol; 2012 Apr; 67(2):177-85. PubMed ID: 22641975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of positive end-expiratory pressure by volumetric capnography variables in lavage-induced acute lung injury.
    Yang Y; Huang Y; Tang R; Chen Q; Hui X; Li Y; Yu Q; Zhao H; Qiu H
    Respiration; 2014; 87(1):75-83. PubMed ID: 24296453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients.
    Blankman P; Shono A; Hermans BJ; Wesselius T; Hasan D; Gommers D
    Br J Anaesth; 2016 Jun; 116(6):862-9. PubMed ID: 27199318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform.
    Pizov R; Cohen M; Weiss Y; Segal E; Cotev S; Perel A
    Crit Care Med; 1996 Aug; 24(8):1381-7. PubMed ID: 8706495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neither dopamine nor dobutamine corrects mesenteric blood flow depression caused by positive end-expiratory pressure in a rat model of acute lung injury.
    Lee RD; Choe E; Flint L; Steinberg S
    Crit Care Med; 1998 Nov; 26(11):1875-80. PubMed ID: 9824082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure.
    Theres H; Binkau J; Laule M; Heinze R; Hundertmark J; Blobner M; Erhardt W; Baumann G; Stangl K
    Crit Care Med; 1999 May; 27(5):953-8. PubMed ID: 10362419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sensitivity and Specificity of Pulmonary Carbon Dioxide Elimination for Noninvasive Assessment of Fluid Responsiveness.
    Tusman G; Groisman I; Maidana GA; Scandurra A; Arca JM; Bohm SH; Suarez-Sipmann F
    Anesth Analg; 2016 May; 122(5):1404-11. PubMed ID: 26505574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure.
    Genoni M; Pelosi P; Romand JA; Pedoto A; Moccetti T; Malacrida R
    Crit Care Med; 1998 Aug; 26(8):1441-5. PubMed ID: 9710107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model.
    Cheifetz IM; Craig DM; Quick G; McGovern JJ; Cannon ML; Ungerleider RM; Smith PK; Meliones JN
    Crit Care Med; 1998 Apr; 26(4):710-6. PubMed ID: 9559609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease.
    Baigorri F; de Monte A; Blanch L; Fernández R; Vallés J; Mestre J; Saura P; Artigas A
    Crit Care Med; 1994 Nov; 22(11):1782-91. PubMed ID: 7956282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haemodynamic effects of pressure support and PEEP ventilation by nasal route in patients with stable chronic obstructive pulmonary disease.
    Ambrosino N; Nava S; Torbicki A; Riccardi G; Fracchia C; Opasich C; Rampulla C
    Thorax; 1993 May; 48(5):523-8. PubMed ID: 8322240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.