These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34304554)
1. Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial Costa CE; Møller-Hansen I; Romaní A; Teixeira JA; Borodina I; Domingues L ACS Synth Biol; 2021 Aug; 10(8):1895-1903. PubMed ID: 34304554 [TBL] [Abstract][Full Text] [Related]
2. Boosting bioethanol production from Eucalyptus wood by whey incorporation. Cunha M; Romaní A; Carvalho M; Domingues L Bioresour Technol; 2018 Feb; 250():256-264. PubMed ID: 29174903 [TBL] [Abstract][Full Text] [Related]
3. Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Costa CE; Romaní A; Teixeira JA; Domingues L Bioresour Technol; 2022 Sep; 359():127463. PubMed ID: 35710047 [TBL] [Abstract][Full Text] [Related]
4. Resveratrol Production in Yeast Hosts: Current Status and Perspectives. Ibrahim GG; Yan J; Xu L; Yang M; Yan Y Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34199540 [TBL] [Abstract][Full Text] [Related]
5. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884 [TBL] [Abstract][Full Text] [Related]
6. Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Romaní A; Garrote G; Alonso JL; Parajó JC Bioresour Technol; 2010 Nov; 101(22):8706-12. PubMed ID: 20634063 [TBL] [Abstract][Full Text] [Related]
7. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106 [TBL] [Abstract][Full Text] [Related]
8. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Meng L; Diao M; Wang Q; Peng L; Li J; Xie N Microb Cell Fact; 2023 Mar; 22(1):46. PubMed ID: 36890537 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Shrestha A; Pandey RP; Sohng JK Appl Microbiol Biotechnol; 2019 Apr; 103(7):2959-2972. PubMed ID: 30798357 [TBL] [Abstract][Full Text] [Related]
10. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779 [TBL] [Abstract][Full Text] [Related]
11. Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation. de Castro Assumpção D; Rivera EAC; Tovar LP; Ezeji TC; Filho RM; Mariano AP Bioprocess Biosyst Eng; 2018 Nov; 41(11):1651-1663. PubMed ID: 30051266 [TBL] [Abstract][Full Text] [Related]
12. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process. Castillo Rdel P; Baeza J; Rubilar J; Rivera A; Freer J Appl Biochem Biotechnol; 2012 Dec; 168(7):2028-42. PubMed ID: 23070712 [TBL] [Abstract][Full Text] [Related]
13. Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Muñoz C; Baeza J; Freer J; Mendonça RT J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1861-6. PubMed ID: 21523448 [TBL] [Abstract][Full Text] [Related]
14. Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Fujii T; Murakami K; Endo T; Fujimoto S; Minowa T; Matsushika A; Yano S; Sawayama S Bioprocess Biosyst Eng; 2014 Apr; 37(4):749-54. PubMed ID: 23917411 [TBL] [Abstract][Full Text] [Related]
15. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production. Kuivanen J; Kannisto M; Mojzita D; Rischer H; Toivari M; Jäntti J Microb Cell Fact; 2021 Feb; 20(1):34. PubMed ID: 33536025 [TBL] [Abstract][Full Text] [Related]
18. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Gupta R; Sharma KK; Kuhad RC Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157 [TBL] [Abstract][Full Text] [Related]
19. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain. Ren X; Wang J; Yu H; Peng C; Hu J; Ruan Z; Zhao S; Liang Y; Peng N Bioresour Technol; 2016 Oct; 218():623-30. PubMed ID: 27416512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]