BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34305258)

  • 1. Sealing and Bisection of Blood Vessels using a 1470 nm Laser: Optical, Thermal, and Tissue Damage Simulations.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11621():. PubMed ID: 34305258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Simulations for Infrared Laser Sealing and Cutting of Blood Vessels.
    Giglio NC; Fried NM
    IEEE J Sel Top Quantum Electron; 2021; 27(4):1-8. PubMed ID: 33746498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.
    Giglio NC; Hutchens TC; Perkins WC; Latimer C; Ward A; Nau WH; Fried NM
    J Biomed Opt; 2014 Mar; 19(3):38002. PubMed ID: 24658792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Coherence Tomography Feedback System for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11948():. PubMed ID: 35950053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.
    Saeed WM; Yoshino JK; Traynham AJ; Fried NM
    Lasers Med Sci; 2024 Jun; 39(1):161. PubMed ID: 38907065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fiber-optic linear beam shaping designs for laparoscopic laser sealing of vascular tissues.
    Giglio NC; Grose HM; Fried NM
    Opt Eng; 2022 Feb; 61(2):. PubMed ID: 36711441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35965612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype.
    Hardy LA; Hutchens TC; Larson ER; Gonzalez DA; Chang CH; Nau WH; Fried NM
    J Biomed Opt; 2017 May; 22(5):58002. PubMed ID: 28550708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
    Cilip CM; Rosenbury SB; Giglio N; Hutchens TC; Schweinsberger GR; Kerr D; Latimer C; Nau WH; Fried NM
    J Biomed Opt; 2013 May; 18(5):58001. PubMed ID: 23640080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared laser sealing of porcine vascular tissues using a 1,470 nm diode laser: Preliminary in vivo studies.
    Cilip CM; Kerr D; Latimer CA; Rosenbury SB; Giglio NC; Hutchens TC; Nau WH; Fried NM
    Lasers Surg Med; 2017 Apr; 49(4):366-371. PubMed ID: 27785787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.
    Saeed WM; O'Brien PJ; Yoshino J; Restelli AR; Traynham AJ; Fried NM
    Lasers Surg Med; 2023 Dec; 55(10):886-899. PubMed ID: 38009367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Real-Time Fluorescence Feedback System for Infrared Laser Sealing of Blood Vessels.
    Saeed WM; Fried NM
    IEEE J Sel Top Quantum Electron; 2023; 29(4 Biophotonics):. PubMed ID: 36466144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting clinical efficacy of photoangiolytic and cutting/ablating lasers using the chick chorioallantoic membrane model: implications for endoscopic voice surgery.
    Burns JA; Kobler JB; Heaton JT; Anderson RR; Zeitels SM
    Laryngoscope; 2008 Jun; 118(6):1109-24. PubMed ID: 18354337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time, Nondestructive Optical Feedback Systems for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35949201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a Laparoscopic Ferromagnetic Technology-based Vessel Sealing Device and Comparative Study to Ultrasonic and Bipolar Laparoscopic Devices.
    Chen J; Jensen CR; Manwaring PK; Glasgow RE
    Surg Laparosc Endosc Percutan Tech; 2017 Apr; 27(2):e12-e17. PubMed ID: 28234706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nondestructive optical feedback systems for use during infrared laser sealing of blood vessels.
    Giglio NC; Fried NM
    Lasers Surg Med; 2022 Aug; 54(6):875-882. PubMed ID: 35391495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a novel efficacy score to compare sealing and cutting devices in a porcine model.
    Brecht L; Wallwiener M; Schott S; Domschke C; Dinkic C; Golatta M; Schuetz F; Fluhr H; Stenzinger A; Kirchner M; Sohn C; Rom J
    Surg Endosc; 2018 Feb; 32(2):1002-1011. PubMed ID: 28840380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft tissue cutting efficiency by 980 nm laser with carbon-, erbium-, and titanium-doped optothermal fiber converters.
    Belikov AV; Skrypnik AV
    Lasers Surg Med; 2019 Feb; 51(2):185-200. PubMed ID: 30431174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.
    Timm RW; Asher RM; Tellio KR; Welling AL; Clymer JW; Amaral JF
    Med Devices (Auckl); 2014; 7():263-71. PubMed ID: 25114600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vessel-Sealing Capability of Novel Microwave Sealer: Experimental Study in Animal Models.
    Dang KT; Naka S; Yamada A; Mukaisho KI; Tani T
    Surg Innov; 2020 Dec; 27(6):633-643. PubMed ID: 32614282
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.