These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34306044)
1. A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives. Kumar P; Erturk VS; Murillo-Arcila M; Banerjee R; Manickam A Adv Differ Equ; 2021; 2021(1):341. PubMed ID: 34306044 [TBL] [Abstract][Full Text] [Related]
2. A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Kumar P; Erturk VS; Murillo-Arcila M Results Phys; 2021 May; 24():104213. PubMed ID: 33898210 [TBL] [Abstract][Full Text] [Related]
3. A case study of 2019-nCoV in Russia using integer and fractional order derivatives. Vellappandi M; Kumar P; Govindaraj V Math Methods Appl Sci; 2022 Sep; ():. PubMed ID: 36247230 [TBL] [Abstract][Full Text] [Related]
4. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator. Liu X; Arfan M; Ur Rahman M; Fatima B Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):98-112. PubMed ID: 35271386 [TBL] [Abstract][Full Text] [Related]
5. Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Nabi KN; Abboubakar H; Kumar P Chaos Solitons Fractals; 2020 Dec; 141():110283. PubMed ID: 32982078 [TBL] [Abstract][Full Text] [Related]
6. Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative. Alzahrani E; El-Dessoky MM; Baleanu D Results Phys; 2021 Jun; 25():104240. PubMed ID: 33936936 [TBL] [Abstract][Full Text] [Related]
7. Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel. Akyildiz FT; Alshammari FS Adv Differ Equ; 2021; 2021(1):319. PubMed ID: 34249124 [TBL] [Abstract][Full Text] [Related]
8. Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model. Li XP; DarAssi MH; Khan MA; Chukwu CW; Alshahrani MY; Shahrani MA; Riaz MB Results Phys; 2022 Jul; 38():105652. PubMed ID: 35663799 [TBL] [Abstract][Full Text] [Related]
9. On nonlinear dynamics of COVID-19 disease model corresponding to nonsingular fractional order derivative. Arfan M; Lashin MMA; Sunthrayuth P; Shah K; Ullah A; Iskakova K; Gorji MR; Abdeljawad T Med Biol Eng Comput; 2022 Nov; 60(11):3169-3185. PubMed ID: 36107356 [TBL] [Abstract][Full Text] [Related]
10. Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives. Omame A; Abbas M; Abdel-Aty AH Chaos Solitons Fractals; 2022 Sep; 162():112427. PubMed ID: 35844899 [TBL] [Abstract][Full Text] [Related]
11. Modeling and analysis of a fractional anthroponotic cutaneous leishmania model with Atangana-Baleanu derivative. Haq I; Khan A; Ahmad S; Ali A; Rahman MU Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1722-1743. PubMed ID: 35344457 [TBL] [Abstract][Full Text] [Related]
12. A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel. Okposo NI; Adewole MO; Okposo EN; Ojarikre HI; Abdullah FA Chaos Solitons Fractals; 2021 Nov; 152():111427. PubMed ID: 36569784 [TBL] [Abstract][Full Text] [Related]
13. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. Owolabi KM; Atangana A Chaos; 2019 Feb; 29(2):023111. PubMed ID: 30823722 [TBL] [Abstract][Full Text] [Related]
14. A fractional order model for the co-interaction of COVID-19 and Hepatitis B virus. Omame A; Abbas M; Onyenegecha CP Results Phys; 2022 Jun; 37():105498. PubMed ID: 36748094 [TBL] [Abstract][Full Text] [Related]
15. A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative. Omame A; Abbas M; Onyenegecha CP Chaos Solitons Fractals; 2021 Dec; 153():111486. PubMed ID: 34658543 [TBL] [Abstract][Full Text] [Related]
17. Ulam-Hyers stability of tuberculosis and COVID-19 co-infection model under Atangana-Baleanu fractal-fractional operator. Selvam A; Sabarinathan S; Senthil Kumar BV; Byeon H; Guedri K; Eldin SM; Khan MI; Govindan V Sci Rep; 2023 Jun; 13(1):9012. PubMed ID: 37268671 [TBL] [Abstract][Full Text] [Related]
18. On the dynamical modeling of COVID-19 involving Atangana-Baleanu fractional derivative and based on Daubechies framelet simulations. Mohammad M; Trounev A Chaos Solitons Fractals; 2020 Nov; 140():110171. PubMed ID: 32834652 [TBL] [Abstract][Full Text] [Related]
19. Analysis and comparative study of a deterministic mathematical model of SARS-COV-2 with fractal-fractional operators: a case study. Kubra KT; Ali R; Alqahtani RT; Gulshan S; Iqbal Z Sci Rep; 2024 Mar; 14(1):6431. PubMed ID: 38499671 [TBL] [Abstract][Full Text] [Related]
20. A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Abioye AI; Peter OJ; Ogunseye HA; Oguntolu FA; Ayoola TA; Oladapo AO Healthc Anal (N Y); 2023 Dec; 4():100210. PubMed ID: 37361719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]