These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34306157)

  • 41. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves.
    Ju WT; Kwon OC; Kim HB; Sung GB; Kim HW; Kim YS
    J Food Sci Technol; 2018 May; 55(5):1789-1796. PubMed ID: 29666531
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolomics-Based Analyses of Dynamic Changes in Flavonoid Profiles in the Black Mulberry Winemaking Process.
    Qin Y; Xu H; Chen Y; Lei J; Sun J; Zhao Y; Lian W; Zhang M
    Foods; 2023 May; 12(11):. PubMed ID: 37297465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and properties of urease from the leaf of mulberry, Morus alba.
    Hirayama C; Sugimura M; Saito H; Nakamura M
    Phytochemistry; 2000 Feb; 53(3):325-30. PubMed ID: 10703052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiological, anatomical, and transcriptional responses of mulberry (Morus alba L.) to Cd stress in contaminated soil.
    Guo Z; Zeng P; Xiao X; Peng C
    Environ Pollut; 2021 Sep; 284():117387. PubMed ID: 34049160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distribution and Characteristics of Transposable Elements in the Mulberry Genome.
    Ma B; Xin Y; Kuang L; He N
    Plant Genome; 2019 Jun; 12(2):. PubMed ID: 31290922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae.
    Xu P; Zhang M; Qian P; Li J; Wang X; Wu Y
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feeding response of the silkworm,Bombyx mori, to UV irradiation of mulberry leaves.
    Yazawa M; Shimizu T; Hirao T
    J Chem Ecol; 1992 Apr; 18(4):561-9. PubMed ID: 24253866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile.
    Tanaka K; Uda Y; Ono Y; Nakagawa T; Suwa M; Yamaoka R; Touhara K
    Curr Biol; 2009 Jun; 19(11):881-90. PubMed ID: 19427209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Safe utilization of heavy-metal-contaminated farmland by mulberry tree cultivation and silk production.
    Wan X; Lei M; Chen T; Tan Y; Yang J
    Sci Total Environ; 2017 Dec; 599-600():1867-1873. PubMed ID: 28545213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of economic plant for remediation of cadmium contaminated soils: Three mulberry (Moms alba L.) varieties cultivated in two polluted fields.
    Lei M; Pan Y; Chen C; Du H; Tie B; Yan X; Huang R
    Chemosphere; 2019 Dec; 236():124379. PubMed ID: 31545189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolomics Analysis of the Larval Head of the Silkworm, Bombyx mori.
    Li Y; Wang X; Chen Q; Hou Y; Xia Q; Zhao P
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27657048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis).
    Ma B; Luo Y; Jia L; Qi X; Zeng Q; Xiang Z; He N
    J Integr Plant Biol; 2014 Sep; 56(9):887-901. PubMed ID: 24304637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mobility of cadmium and lead in the soil-mulberry-silkworm system.
    Jiang Y; Jiang S; Yan X; Qin Z; Jia C; Li Z; Zhang J; Huang R
    Chemosphere; 2020 Mar; 242():125179. PubMed ID: 31677517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Safe utilization of polluted soil by arsenic, cadmium and lead through an integrated sericultural measure.
    Feng R; Zhu Q; Xu Y; Li W; Ding Y; Han L; Rensing C; Wang R
    Sci Total Environ; 2019 Apr; 659():1234-1241. PubMed ID: 31096336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry.
    Nakagawa K; Ogawa K; Higuchi O; Kimura T; Miyazawa T; Hori M
    Anal Biochem; 2010 Sep; 404(2):217-22. PubMed ID: 20470744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Effect of Replacing Wildrye Hay with Mulberry Leaves on the Growth Performance, Blood Metabolites, and Carcass Characteristics of Sheep.
    Sun H; Luo Y; Zhao F; Fan Y; Ma J; Jin Y; Hou Q; Ahmed G; Wang H
    Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33147878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic-Based Approach to the Proteins Involved in 1-Deoxynojirimycin Accumulation in Silkworm Bombyx mori (Lepidoptera: Bombycidae).
    Chen H; Liu Y; Wang W; Olatunji OJ; Pan G; Ouyang Z
    J Insect Sci; 2018 Mar; 18(2):. PubMed ID: 29718504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Bromatological characterization of mulberry cultivars, Morus spp., and determination of nutritional indexes of Bombyx mori L. (Lepidoptera: Bombycidae)].
    Meneguim AM; Lustri C; Oliveira DD; Yada IF; Pasini A
    Neotrop Entomol; 2010; 39(4):506-12. PubMed ID: 20877984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans.
    Kimura T; Nakagawa K; Kubota H; Kojima Y; Goto Y; Yamagishi K; Oita S; Oikawa S; Miyazawa T
    J Agric Food Chem; 2007 Jul; 55(14):5869-74. PubMed ID: 17555327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells.
    Cho HD; Min HJ; Won YS; Ahn HY; Cho YS; Seo KI
    BMC Complement Altern Med; 2019 Sep; 19(1):241. PubMed ID: 31488109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.