BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 3430624)

  • 1. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process.
    Popot JL; Gerchman SE; Engelman DM
    J Mol Biol; 1987 Dec; 198(4):655-76. PubMed ID: 3430624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of native bacteriorhodopsin structure from fragments.
    Liao MJ; Huang KS; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4200-4. PubMed ID: 6707001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments.
    Huang KS; Bayley H; Liao MJ; London E; Khorana HG
    J Biol Chem; 1981 Apr; 256(8):3802-9. PubMed ID: 7217055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump.
    Liao MJ; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4194-9. PubMed ID: 6707000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments.
    Popot JL; Trewhella J; Engelman DM
    EMBO J; 1986 Nov; 5(11):3039-44. PubMed ID: 3792305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures.
    London E; Khorana HG
    J Biol Chem; 1982 Jun; 257(12):7003-11. PubMed ID: 7085614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of native bacteriorhodopsin structure following acetylation of epsilon-amino groups of Lys-30, -40, and -41.
    Abercrombie DM; Khorana HG
    J Biol Chem; 1986 Apr; 261(11):4875-80. PubMed ID: 3007477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
    Booth PJ; Farooq A; Flitsch SL
    Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin.
    Kahn TW; Sturtevant JM; Engelman DM
    Biochemistry; 1992 Sep; 31(37):8829-39. PubMed ID: 1390670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refolding of bacteriorhodopsin. Protease V8 fragmentation and chromophore reconstitution from proteolytic V8 fragments.
    Sigrist H; Wenger RH; Kislig E; Wüthrich M
    Eur J Biochem; 1988 Oct; 177(1):125-33. PubMed ID: 3181151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of two chymotryptic fragments in the structure of renatured bacteriorhodopsin by neutron diffraction.
    Trewhella J; Popot JL; Zaccaï G; Engelman DM
    EMBO J; 1986 Nov; 5(11):3045-9. PubMed ID: 3792306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
    Kahn TW; Engelman DM
    Biochemistry; 1992 Jul; 31(26):6144-51. PubMed ID: 1627558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a carboxyl group in the vicinity of the retinal chromophore of bacteriorhodopsin.
    Herz JM; Hrabeta E; Packer L
    Biochem Biophys Res Commun; 1983 Jul; 114(2):872-81. PubMed ID: 6882459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refolding and proton pumping activity of a polyethylene glycol-bacteriorhodopsin water-soluble conjugate.
    Sirokmán G; Fasman GD
    Protein Sci; 1993 Jul; 2(7):1161-70. PubMed ID: 8358299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular dichroism study of bacteriorhodopsin-lipid interaction.
    Nishiya T; Tabushi I; Maeda A
    Biochem Biophys Res Commun; 1987 Apr; 144(2):836-40. PubMed ID: 3579943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences.
    Dahmane T; Rappaport F; Popot JL
    Eur Biophys J; 2013 Mar; 42(2-3):85-101. PubMed ID: 22926530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.