These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 3430628)

  • 1. Alterations in DNA helix stability due to base modifications can be evaluated using denaturing gradient gel electrophoresis.
    Collins M; Myers RM
    J Mol Biol; 1987 Dec; 198(4):737-44. PubMed ID: 3430628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of denaturing gradient gel electrophoresis to screen for DNA sequence polymorphisms in the human factor VIII gene.
    Collins M; Wolf SF; Haines LL; Mitsock L
    Electrophoresis; 1989; 10(5-6):390-6. PubMed ID: 2569966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of DNA methyltransferases.
    Cheng X
    Annu Rev Biophys Biomol Struct; 1995; 24():293-318. PubMed ID: 7663118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis.
    Myers RM; Fischer SG; Maniatis T; Lerman LS
    Nucleic Acids Res; 1985 May; 13(9):3111-29. PubMed ID: 2987873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory.
    Fischer SG; Lerman LS
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1579-83. PubMed ID: 6220406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical display of thymine residues flipped out by DNA methyltransferases.
    Serva S; Weinhold E; Roberts RJ; Klimasauskas S
    Nucleic Acids Res; 1998 Aug; 26(15):3473-9. PubMed ID: 9671807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On heterogeneity of DNA methylases from Escherichia coli SK cells.
    Nikolskaya II; Lopatina NG; Debov SS
    Mol Cell Biochem; 1981 Feb; 35(1):3-10. PubMed ID: 7012581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4.
    Jeltsch A; Christ F; Fatemi M; Roth M
    J Biol Chem; 1999 Jul; 274(28):19538-44. PubMed ID: 10391886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues.
    Jeltsch A
    Biol Chem; 2001 Apr; 382(4):707-10. PubMed ID: 11405235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Isolation of modification-restriction enzymes HpaI and HpaII].
    Bogdarina IG; Zinkevich VE; Bur'ianov IaI; Baev AA
    Biokhimiia; 1985 Oct; 50(10):1659-64. PubMed ID: 2416355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA; determination by temperature-gradient gel electrophoresis.
    Ke SH; Wartell RM
    Nucleic Acids Res; 1993 Nov; 21(22):5137-43. PubMed ID: 8255768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase.
    O'Gara M; Roberts RJ; Cheng X
    J Mol Biol; 1996 Nov; 263(4):597-606. PubMed ID: 8918941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro methylation of DNA with Hpa II methylase.
    Quint A; Cedar H
    Nucleic Acids Res; 1981 Feb; 9(3):633-46. PubMed ID: 7220347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Z-DNA the sequence G-C-G-C is neither methylated by Hha I methyltransferase nor cleaved by Hha I restriction endonuclease.
    Vardimon L; Rich A
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3268-72. PubMed ID: 6328508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. M.HhaI binds tightly to substrates containing mismatches at the target base.
    Klimasauskas S; Roberts RJ
    Nucleic Acids Res; 1995 Apr; 23(8):1388-95. PubMed ID: 7753630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation in plants.
    Vanyushin BF
    Curr Top Microbiol Immunol; 2006; 301():67-122. PubMed ID: 16570846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of HhaI methylation on DNA local structure.
    Fox KR
    Biochem J; 1986 Feb; 234(1):213-6. PubMed ID: 3707542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis.
    Myers RM; Fischer SG; Lerman LS; Maniatis T
    Nucleic Acids Res; 1985 May; 13(9):3131-45. PubMed ID: 4000972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HhaI methylase and restriction endonuclease as probes for B to Z DNA conformational changes in d(GCGC) sequences.
    Zacharias W; Larson JE; Kilpatrick MW; Wells RD
    Nucleic Acids Res; 1984 Oct; 12(20):7677-92. PubMed ID: 6093048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denaturing gradient gel electrophoresis to detect methylation changes in DNA.
    Shiraishi M
    Methods Mol Biol; 2004; 287():219-31. PubMed ID: 15273415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.