These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34306590)

  • 1. Recognition of Flexion and Extension Imagery Involving the Right and Left Arms Based on Deep Belief Network and Functional Near-Infrared Spectroscopy.
    Fu Y; Chen R; Gong A; Qian Q; Ding N; Zhang W; Su L; Zhao L
    J Healthc Eng; 2021; 2021():5533565. PubMed ID: 34306590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based classification of fNIRS signals in motor imagery BCI system.
    Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480
    [No Abstract]   [Full Text] [Related]  

  • 5. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
    Lu N; Li T; Ren X; Miao H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism.
    Qin Y; Li B; Wang W; Shi X; Peng C; Lu Y
    Neuroscience; 2024 Mar; 542():59-68. PubMed ID: 38369007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy].
    Li Y; Xiong X; Li Z; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):262-270. PubMed ID: 32329278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study.
    Zafar A; Hussain SJ; Ali MU; Lee SW
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach.
    Hosni SM; Borgheai SB; McLinden J; Shahriari Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient.
    Fu Y; Wang F; Li Y; Gong A; Qian Q; Su L; Zhao L
    Biomed Tech (Berl); 2022 Jun; 67(3):173-183. PubMed ID: 35420003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronizing Motor Imagery Cue in fNIRS Brain-Computer Interface to reduce confounding effects of respiration.
    Premchand B; Zhang Z; Yu J; Yang T; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
    Li H; Gong A; Zhao L; Zhang W; Wang F; Fu Y
    Comput Intell Neurosci; 2021; 2021():6614112. PubMed ID: 33688336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.