BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34306762)

  • 1. Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters.
    Zestos AG
    Int J Electrochem; 2018; 2018():. PubMed ID: 34306762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Carbon Nanostructures for Detection of Neurotransmitters.
    Sainio S; Palomäki T; Tujunen N; Protopopova V; Koehne J; Kordas K; Koskinen J; Meyyappan M; Laurila T
    Mol Neurobiol; 2015 Oct; 52(2):859-66. PubMed ID: 26093378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites.
    Cao Q; Hensley DK; Lavrik NV; Venton BJ
    Carbon N Y; 2019 Dec; 155():250-257. PubMed ID: 31588146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanofiber electrode for neurochemical monitoring.
    Zhang DA; Rand E; Marsh M; Andrews RJ; Lee KH; Meyyappan M; Koehne JE
    Mol Neurobiol; 2013 Oct; 48(2):380-5. PubMed ID: 23975638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes.
    Zestos AG; Nguyen MD; Poe BL; Jacobs CB; Venton BJ
    Sens Actuators B Chem; 2013 Jun; 182():652-658. PubMed ID: 33927480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review.
    Kumar P; Soni I; Jayaprakash GK; Flores-Moreno R
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters.
    Cao Q; Shao Z; Hensley D; Venton BJ
    Faraday Discuss; 2022 Apr; 233(0):303-314. PubMed ID: 34889344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing.
    Cao Q; Shin M; Lavrik NV; Venton BJ
    Nano Lett; 2020 Sep; 20(9):6831-6836. PubMed ID: 32813535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes.
    Chen RS; Huang WH; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2003 Nov; 75(22):6341-5. PubMed ID: 14616019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel carbon-fiber microelectrode batch fabrication using a 3D-printed mold and polyimide resin.
    Trikantzopoulos E; Yang C; Ganesana M; Wang Y; Venton BJ
    Analyst; 2016 Sep; 141(18):5256-5260. PubMed ID: 27536741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical treatment in KOH renews and activates carbon fiber microelectrode surfaces.
    Cao Q; Lucktong J; Shao Z; Chang Y; Venton BJ
    Anal Bioanal Chem; 2021 Nov; 413(27):6737-6746. PubMed ID: 34302181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the fabrication of low-noise carbon fiber nanoelectrodes.
    Huang WH; Pang DW; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2001 Mar; 73(5):1048-52. PubMed ID: 11289416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry.
    Singh YS; Sawarynski LE; Dabiri PD; Choi WR; Andrews AM
    Anal Chem; 2011 Sep; 83(17):6658-66. PubMed ID: 21770471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on electrochemical detection of serotonin based on surface modified electrodes.
    Sharma S; Singh N; Tomar V; Chandra R
    Biosens Bioelectron; 2018 Jun; 107():76-93. PubMed ID: 29448224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes.
    Güell AG; Meadows KE; Unwin PR; Macpherson JV
    Phys Chem Chem Phys; 2010 Sep; 12(34):10108-14. PubMed ID: 20689900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.