These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34306762)

  • 1. Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters.
    Zestos AG
    Int J Electrochem; 2018; 2018():. PubMed ID: 34306762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Carbon Nanostructures for Detection of Neurotransmitters.
    Sainio S; Palomäki T; Tujunen N; Protopopova V; Koehne J; Kordas K; Koskinen J; Meyyappan M; Laurila T
    Mol Neurobiol; 2015 Oct; 52(2):859-66. PubMed ID: 26093378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites.
    Cao Q; Hensley DK; Lavrik NV; Venton BJ
    Carbon N Y; 2019 Dec; 155():250-257. PubMed ID: 31588146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanofiber electrode for neurochemical monitoring.
    Zhang DA; Rand E; Marsh M; Andrews RJ; Lee KH; Meyyappan M; Koehne JE
    Mol Neurobiol; 2013 Oct; 48(2):380-5. PubMed ID: 23975638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes.
    Zestos AG; Nguyen MD; Poe BL; Jacobs CB; Venton BJ
    Sens Actuators B Chem; 2013 Jun; 182():652-658. PubMed ID: 33927480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review.
    Kumar P; Soni I; Jayaprakash GK; Flores-Moreno R
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters.
    Cao Q; Shao Z; Hensley D; Venton BJ
    Faraday Discuss; 2022 Apr; 233(0):303-314. PubMed ID: 34889344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing.
    Cao Q; Shin M; Lavrik NV; Venton BJ
    Nano Lett; 2020 Sep; 20(9):6831-6836. PubMed ID: 32813535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes.
    Chen RS; Huang WH; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2003 Nov; 75(22):6341-5. PubMed ID: 14616019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel carbon-fiber microelectrode batch fabrication using a 3D-printed mold and polyimide resin.
    Trikantzopoulos E; Yang C; Ganesana M; Wang Y; Venton BJ
    Analyst; 2016 Sep; 141(18):5256-5260. PubMed ID: 27536741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical treatment in KOH renews and activates carbon fiber microelectrode surfaces.
    Cao Q; Lucktong J; Shao Z; Chang Y; Venton BJ
    Anal Bioanal Chem; 2021 Nov; 413(27):6737-6746. PubMed ID: 34302181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the fabrication of low-noise carbon fiber nanoelectrodes.
    Huang WH; Pang DW; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2001 Mar; 73(5):1048-52. PubMed ID: 11289416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry.
    Singh YS; Sawarynski LE; Dabiri PD; Choi WR; Andrews AM
    Anal Chem; 2011 Sep; 83(17):6658-66. PubMed ID: 21770471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on electrochemical detection of serotonin based on surface modified electrodes.
    Sharma S; Singh N; Tomar V; Chandra R
    Biosens Bioelectron; 2018 Jun; 107():76-93. PubMed ID: 29448224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes.
    Güell AG; Meadows KE; Unwin PR; Macpherson JV
    Phys Chem Chem Phys; 2010 Sep; 12(34):10108-14. PubMed ID: 20689900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.