BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34306762)

  • 21. Carbon-Fiber Nanoelectrodes for Real-Time Discrimination of Vesicle Cargo in the Native Cellular Environment.
    Roberts JG; Mitchell EC; Dunaway LE; McCarty GS; Sombers LA
    ACS Nano; 2020 Mar; 14(3):2917-2926. PubMed ID: 32058693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Nanotube Microelectrode Set: Detection of Biomolecules to Heavy Metals.
    Gupta P; Rahm CE; Griesmer B; Alvarez NT
    Anal Chem; 2021 May; 93(20):7439-7448. PubMed ID: 33988989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of nanoscale carbon-based materials in heavy metal sensing and detection.
    Wanekaya AK
    Analyst; 2011 Nov; 136(21):4383-91. PubMed ID: 21894336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.
    Alhans R; Singh A; Singhal C; Narang J; Wadhwa S; Mathur A
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():273-279. PubMed ID: 29853092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.
    Motoc S; Remes A; Pop A; Manea F; Schoonman J
    J Environ Sci (China); 2013 Apr; 25(4):838-47. PubMed ID: 23923795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection.
    Yang C; Hu K; Wang D; Zubi Y; Lee ST; Puthongkham P; Mirkin MV; Venton BJ
    Anal Chem; 2019 Apr; 91(7):4618-4624. PubMed ID: 30810304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection.
    Raju D; Mendoza A; Wonnenberg P; Mohanaraj S; Sarbanes M; Truong C; Zestos AG
    Anal Methods; 2019 Mar; 11(12):1620-1630. PubMed ID: 34079589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretchable Electrochemical Biosensing Platform Based on Ni-MOF Composite/Au Nanoparticle-Coated Carbon Nanotubes for Real-Time Monitoring of Dopamine Released from Living Cells.
    Shu Y; Lu Q; Yuan F; Tao Q; Jin D; Yao H; Xu Q; Hu X
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49480-49488. PubMed ID: 33100007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in the development and application of nanoelectrodes.
    Fan Y; Han C; Zhang B
    Analyst; 2016 Oct; 141(19):5474-87. PubMed ID: 27510555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection.
    Cao Q; Puthongkham P; Venton BJ
    Anal Methods; 2019 Jan; 11(3):247-261. PubMed ID: 30740148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes.
    Zhang X; Zhang W; Zhou X; Ogorevc B
    Anal Chem; 1996 Oct; 68(19):3338-43. PubMed ID: 21619269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food.
    Amatatongchai M; Sroysee W; Sodkrathok P; Kesangam N; Chairam S; Jarujamrus P
    Anal Chim Acta; 2019 Oct; 1076():64-72. PubMed ID: 31203965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing.
    Saunier V; Flahaut E; Blatché MC; Bergaud C; Maziz A
    Biosens Bioelectron; 2020 Oct; 165():112413. PubMed ID: 32729532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue.
    Schmidt AC; Wang X; Zhu Y; Sombers LA
    ACS Nano; 2013 Sep; 7(9):7864-73. PubMed ID: 23941323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica.
    Swiergiel AH; Palamarchouk VS; Dunn AJ
    J Neurosci Methods; 1997 Apr; 73(1):29-33. PubMed ID: 9130675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate.
    Salimi A; Kavosi B; Babaei A; Hallaj R
    Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glassy carbon electrode modified with hybrid nanofibers containing carbon nanotubes trapped in chitosan for the voltammetric sensing of nicotine at biological pH.
    Mirani A; Maleknia L; Amirabadi A
    Nanotechnology; 2020 Oct; 31(43):435504. PubMed ID: 32615549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fabrication of nanoelectrodes based on a single carbon nanotube.
    Shen J; Wang W; Chen Q; Wang M; Xu S; Zhou Y; Zhang XX
    Nanotechnology; 2009 Jun; 20(24):245307. PubMed ID: 19468163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.