These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34306812)

  • 1. Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO
    Salcedo A; Lustemberg PG; Rui N; Palomino RM; Liu Z; Nemsak S; Senanayake SD; Rodriguez JA; Ganduglia-Pirovano MV; Irigoyen B
    ACS Catal; 2021 Jul; 11(13):8327-8337. PubMed ID: 34306812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature.
    Liu Z; Lustemberg P; Gutiérrez RA; Carey JJ; Palomino RM; Vorokhta M; Grinter DC; Ramírez PJ; Matolín V; Nolan M; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13041-13046. PubMed ID: 28815842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking.
    Liu Z; Grinter DC; Lustemberg PG; Nguyen-Phan TD; Zhou Y; Luo S; Waluyo I; Crumlin EJ; Stacchiola DJ; Zhou J; Carrasco J; Busnengo HF; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7455-9. PubMed ID: 27144344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission.
    Liu Z; Duchoň T; Wang H; Grinter DC; Waluyo I; Zhou J; Liu Q; Jeong B; Crumlin EJ; Matolín V; Stacchiola DJ; Rodriguez JA; Senanayake SD
    Phys Chem Chem Phys; 2016 Jun; 18(25):16621-8. PubMed ID: 27095305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Coke Resistance of Ni-Ceria Catalysts for Partial Oxidation of Methane to Syngas: Experimental and Computational Study.
    Khurana D; Dahiya N; Negi S; Bordoloi A; Ali Haider M; Bal R; Khan TS
    Chem Asian J; 2023 Apr; 18(7):e202201298. PubMed ID: 36797847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds.
    Carrasco J; López-Durán D; Liu Z; Duchoň T; Evans J; Senanayake SD; Crumlin EJ; Matolín V; Rodríguez JA; Ganduglia-Pirovano MV
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3917-21. PubMed ID: 25651288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Selectivity in the Direct Conversion of Methane to Methanol: Bimetallic Synergistic Effects on the Cleavage of C-H and O-H Bonds over NiCu/CeO
    Lustemberg PG; Senanayake SD; Rodriguez JA; Ganduglia-Pirovano MV
    J Phys Chem Lett; 2022 Jun; 13(24):5589-5596. PubMed ID: 35699247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method.
    Alvarez-Galvan C; Melian M; Ruiz-Matas L; Eslava JL; Navarro RM; Ahmadi M; Roldan Cuenya B; Fierro JLG
    Front Chem; 2019; 7():104. PubMed ID: 30931293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.
    Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO
    Hong Phuong P; Cam Anh H; Tri N; Phung Anh N; Cam Loc L
    ACS Omega; 2022 Jun; 7(23):20092-20103. PubMed ID: 35721961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coke-Resistant Ni/CeZrO
    Sophiana IC; Iskandar F; Devianto H; Nishiyama N; Budhi YW
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Temperature CO
    Wang F; Han K; Yu W; Zhao L; Wang Y; Wang X; Yu H; Shi W
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35022-35034. PubMed ID: 32644767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO
    Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X
    Front Chem; 2020; 8():581923. PubMed ID: 33195071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support Effects on the Activity of Ni Catalysts for the Propane Steam Reforming Reaction.
    Kokka A; Petala A; Panagiotopoulou P
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride.
    Li X; Phornphimon M; Zhang X; Deng J; Zhang D
    Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.