These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34306982)

  • 1. Engineering Copper Iodide (CuI) for Multifunctional p-Type Transparent Semiconductors and Conductors.
    Liu A; Zhu H; Kim MG; Kim J; Noh YY
    Adv Sci (Weinh); 2021 Jul; 8(14):2100546. PubMed ID: 34306982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper(I) Iodide Thin Films: Deposition Methods and Hole-Transporting Performance.
    Jamshidi M; Gardner JM
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.
    Yang C; Souchay D; Kneiß M; Bogner M; Wei HM; Lorenz M; Oeckler O; Benstetter G; Fu YQ; Grundmann M
    Nat Commun; 2017 Jul; 8():16076. PubMed ID: 28681842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit.
    Yang C; Kneiβ M; Lorenz M; Grundmann M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):12929-12933. PubMed ID: 27807139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of TiO
    Raj V; Lu T; Lockrey M; Liu R; Kremer F; Li L; Liu Y; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24254-24263. PubMed ID: 31251025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching Theoretical Limits in the Performance of Printed P-Type CuI Transistors via Room Temperature Vacancy Engineering.
    Kwon YA; Kim JH; Barma SV; Lee KH; Jo SB; Cho JH
    Adv Mater; 2023 Dec; 35(51):e2307206. PubMed ID: 37923398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate.
    Coroa J; Morais Faustino BM; Marques A; Bianchi C; Koskinen T; Juntunen T; Tittonen I; Ferreira I
    RSC Adv; 2019 Oct; 9(61):35384-35391. PubMed ID: 35528061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature Domain-epitaxy of Copper Iodide Thin Films for Transparent CuI/ZnO Heterojunctions with High Rectification Ratios Larger than 10(9).
    Yang C; Kneiß M; Schein FL; Lorenz M; Grundmann M
    Sci Rep; 2016 Feb; 6():21937. PubMed ID: 26916497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-Stable Transparent Silver Iodide-Copper Iodide Heterojunction Diode.
    Cha JH; Jung DY
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43807-43813. PubMed ID: 29181977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature Solution-Synthesized p-Type Copper(I) Iodide Semiconductors for Transparent Thin-Film Transistors and Complementary Electronics.
    Liu A; Zhu H; Park WT; Kang SJ; Xu Y; Kim MG; Noh YY
    Adv Mater; 2018 Jul; ():e1802379. PubMed ID: 29974529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Vacancy-Controlled Copper Iodide Semiconductor for High-Performance p-Type Thin-Film Transistors.
    Lee HA; Yatsu K; Kim TI; Kwon HI; Park IJ
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56416-56426. PubMed ID: 36503237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance p-channel transistors with transparent Zn doped-CuI.
    Liu A; Zhu H; Park WT; Kim SJ; Kim H; Kim MG; Noh YY
    Nat Commun; 2020 Aug; 11(1):4309. PubMed ID: 32855400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hole Concentration Reduction in CuI by Zn Substitution and its Mechanism: Toward Device Applications.
    Tsuji M; Iimura S; Kim J; Hosono H
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Transparent CuI Thin Films by a Facile Low-Cost High Pressure (HP)-PECVD Method at Room Temperature for the Application in Solar Cells.
    Sanyal Dipto A; Mondal L; Hossain J; Rashid MM; Hossain MK; Roy NC; Rashid Talukder M
    ChemistryOpen; 2023 Sep; 12(9):e202300067. PubMed ID: 37699775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The record low thermal conductivity of monolayer cuprous iodide (CuI) with a direct wide bandgap.
    Xu J; Chen A; Yu L; Wei D; Tian Q; Wang H; Qin Z; Qin G
    Nanoscale; 2022 Dec; 14(46):17401-17408. PubMed ID: 36383130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal oxides for optoelectronic applications.
    Yu X; Marks TJ; Facchetti A
    Nat Mater; 2016 Apr; 15(4):383-96. PubMed ID: 27005918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices.
    Shi J; Zhang J; Yang L; Qu M; Qi DC; Zhang KHL
    Adv Mater; 2021 Dec; 33(50):e2006230. PubMed ID: 33797084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".
    Banerjee A; Chattopadhyay KK
    Recent Pat Nanotechnol; 2008; 2(1):41-68. PubMed ID: 19076042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of thickness-related grain boundary migration on hole concentration and mobility of p-type transparent conducting CuI films.
    Xue R; Gao G; Yang L; Xu L; Zhang Y; Zhu J
    RSC Adv; 2024 Mar; 14(13):9072-9079. PubMed ID: 38500616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide Band Gap Chalcogenide Semiconductors.
    Woods-Robinson R; Han Y; Zhang H; Ablekim T; Khan I; Persson KA; Zakutayev A
    Chem Rev; 2020 May; 120(9):4007-4055. PubMed ID: 32250103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.