These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Molecular docking studies of phytocompounds of Rolta R; Salaria D; Kumar V; Patel CN; Sourirajan A; Baumler DJ; Dev K J Biomol Struct Dyn; 2022 May; 40(8):3789-3803. PubMed ID: 33225862 [No Abstract] [Full Text] [Related]
4. Molecular insights into the interaction of eighteen different variants of SARS-CoV-2 spike proteins with sixteen therapeutically important phytocompounds: in silico approach. Batra B; Srinivasan S; Gopalakrishnan SG; Patel CN; Kumar V; Sourirajan A; Dev K J Biomol Struct Dyn; 2023; 41(22):12880-12907. PubMed ID: 36690609 [TBL] [Abstract][Full Text] [Related]
5. Interaction of Bioactive Compounds of Moringa oleifera Leaves with SARS-CoV-2 Proteins to Combat COVID-19 Pathogenesis: a Phytochemical and In Silico Analysis. Siddiqui S; Upadhyay S; Ahmad R; Barkat MA; Jamal A; Alothaim AS; Hassan MZ; Rahman MA; Arshad M; Ahamad T; Khan MF; Shankar H; Ali M; Kaleem S; Ahmad J Appl Biochem Biotechnol; 2022 Dec; 194(12):5918-5944. PubMed ID: 35838886 [TBL] [Abstract][Full Text] [Related]
6. Uncovering the impact of SARS-CoV2 spike protein variants on human receptors: A molecular dynamics docking and simulation approach. Zaheer M; Ali N; Javed H; Munir R; Jamil N J Infect Public Health; 2023 Oct; 16(10):1544-1555. PubMed ID: 37566991 [TBL] [Abstract][Full Text] [Related]
7. Pea eggplant ( Govender N; Zulkifli NS; Badrul Hisham NF; Ab Ghani NS; Mohamed-Hussein ZA PeerJ; 2022; 10():e14168. PubMed ID: 36518265 [TBL] [Abstract][Full Text] [Related]
8. Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Ahmad S; Waheed Y; Abro A; Abbasi SW; Ismail S J Mol Model; 2021 Jun; 27(7):206. PubMed ID: 34169390 [TBL] [Abstract][Full Text] [Related]
9. Methylxanthines as Potential Inhibitor of SARS-CoV-2: an In Silico Approach. Rolta R; Salaria D; Sharma B; Awofisayo O; Fadare OA; Sharma S; Patel CN; Kumar V; Sourirajan A; Baumler DJ; Dev K Curr Pharmacol Rep; 2022; 8(2):149-170. PubMed ID: 35281252 [TBL] [Abstract][Full Text] [Related]
10. Plant derived active compounds as potential anti SARS-CoV-2 agents: an Kashyap D; Jakhmola S; Tiwari D; Kumar R; Moorthy NSHN; Elangovan M; BrĂ¡s NF; Jha HC J Biomol Struct Dyn; 2022; 40(21):10629-10650. PubMed ID: 34225565 [TBL] [Abstract][Full Text] [Related]
11. Comparative docking studies of drugs and phytocompounds for emerging variants of SARS-CoV-2. Chugh A; Sehgal I; Khurana N; Verma K; Rolta R; Vats P; Salaria D; Fadare OA; Awofisayo O; Verma A; Phartyal R; Verma M 3 Biotech; 2023 Jan; 13(1):36. PubMed ID: 36619821 [TBL] [Abstract][Full Text] [Related]
12. Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. Manjunathan R; Periyaswami V; Mitra K; Rosita AS; Pandya M; Selvaraj J; Ravi L; Devarajan N; Doble M BMC Bioinformatics; 2022 May; 23(1):180. PubMed ID: 35578172 [TBL] [Abstract][Full Text] [Related]
13. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. Tragni V; Preziusi F; Laera L; Onofrio A; Mercurio I; Todisco S; Volpicella M; De Grassi A; Pierri CL EPMA J; 2022 Mar; 13(1):149-175. PubMed ID: 35013687 [TBL] [Abstract][Full Text] [Related]
16. Phytoconstituents from Moringa oleifera fruits target ACE2 and open spike glycoprotein to combat SARS-CoV-2: An integrative phytochemical and computational approach. Siddiqui S; Ahmad R; Alaidarous M; Zia Q; Ahmad Mir S; Alshehri B; Srivastava A; Trivedi A J Food Biochem; 2022 May; 46(5):e14062. PubMed ID: 35043973 [TBL] [Abstract][Full Text] [Related]
17. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related]
18. Prevention of SARS-CoV-2 cell entry: insight from Gyebi GA; Adegunloye AP; Ibrahim IM; Ogunyemi OM; Afolabi SO; Ogunro OB J Biomol Struct Dyn; 2022 Mar; 40(5):2121-2145. PubMed ID: 33089728 [TBL] [Abstract][Full Text] [Related]
19. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. Fuzimoto AD J Integr Med; 2021 Sep; 19(5):375-388. PubMed ID: 34479848 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). El-Demerdash A; Metwaly AM; Hassan A; Abd El-Aziz TM; Elkaeed EB; Eissa IH; Arafa RK; Stockand JD Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33808721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]