These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 34307493)
1. Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional Neural Network in the UK Biobank. Bard A; Raisi-Estabragh Z; Ardissino M; Lee AM; Pugliese F; Dey D; Sarkar S; Munroe PB; Neubauer S; Harvey NC; Petersen SE Front Cardiovasc Med; 2021; 8():677574. PubMed ID: 34307493 [No Abstract] [Full Text] [Related]
2. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
4. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149 [TBL] [Abstract][Full Text] [Related]
5. Pericardial adiposity is independently linked to adverse cardiovascular phenotypes: a CMR study of 42 598 UK Biobank participants. Ardissino M; McCracken C; Bard A; Antoniades C; Neubauer S; Harvey NC; Petersen SE; Raisi-Estabragh Z Eur Heart J Cardiovasc Imaging; 2022 Oct; 23(11):1471-1481. PubMed ID: 35640889 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network. Arai H; Kawakubo M; Sanui K; Iwamoto R; Nishimura H; Kadokami T Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162424 [TBL] [Abstract][Full Text] [Related]
7. Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue: a validation study and development of a 3 dimensional pericardial adipose tissue model. Mahajan R; Kuklik P; Grover S; Brooks AG; Wong CX; Sanders P; Selvanayagam JB J Cardiovasc Magn Reson; 2013 Aug; 15(1):73. PubMed ID: 24498950 [TBL] [Abstract][Full Text] [Related]
8. Radiomics of pericardial fat: a new frontier in heart failure discrimination and prediction. Szabo L; Salih A; Pujadas ER; Bard A; McCracken C; Ardissino M; Antoniades C; Vago H; Maurovich-Horvat P; Merkely B; Neubauer S; Lekadir K; Petersen SE; Raisi-Estabragh Z Eur Radiol; 2024 Jun; 34(6):4113-4126. PubMed ID: 37987834 [TBL] [Abstract][Full Text] [Related]
9. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. Karimi-Bidhendi S; Arafati A; Cheng AL; Wu Y; Kheradvar A; Jafarkhani H J Cardiovasc Magn Reson; 2020 Nov; 22(1):80. PubMed ID: 33256762 [TBL] [Abstract][Full Text] [Related]
10. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline. Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH medRxiv; 2023 Mar; ():. PubMed ID: 36945519 [TBL] [Abstract][Full Text] [Related]
11. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
12. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images. Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284 [TBL] [Abstract][Full Text] [Related]
13. A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers. Jiang Y; Punjabi K; Pierce I; Knight D; Yao T; Steeden J; Hughes AD; Muthurangu V; Davies R Magn Reson Imaging; 2025 Jan; 115():110253. PubMed ID: 39401602 [TBL] [Abstract][Full Text] [Related]
14. Deep-Learning Segmentation of Epicardial Adipose Tissue Using Four-Chamber Cardiac Magnetic Resonance Imaging. Daudé P; Ancel P; Confort Gouny S; Jacquier A; Kober F; Dutour A; Bernard M; Gaborit B; Rapacchi S Diagnostics (Basel); 2022 Jan; 12(1):. PubMed ID: 35054297 [TBL] [Abstract][Full Text] [Related]
15. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network. Kim YC; Kim KR; Choe YH Comput Methods Programs Biomed; 2020 Mar; 185():105150. PubMed ID: 31671341 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Association Study of Pericardial Fat Area in 28 161 UK Biobank Participants. Salih A; Ardissino M; Wagen AZ; Bard A; Szabo L; Ryten M; Petersen SE; Altmann A; Raisi-Estabragh Z J Am Heart Assoc; 2023 Nov; 12(21):e030661. PubMed ID: 37889180 [TBL] [Abstract][Full Text] [Related]
17. Quality control of cardiac magnetic resonance imaging segmentation, feature tracking, aortic flow, and native T1 analysis using automated batch processing in the UK Biobank study. Chadalavada S; Rauseo E; Salih A; Naderi H; Khanji M; Vargas JD; Lee AM; Amir-Kalili A; Lockhart L; Graham B; Chirvasa M; Fung K; Paiva J; Sanghvi MM; Slabaugh GG; Jensen MT; Aung N; Petersen SE Eur Heart J Imaging Methods Pract; 2024 Jul; 2(3):qyae094. PubMed ID: 39385845 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis. Suinesiaputra A; Mauger CA; Ambale-Venkatesh B; Bluemke DA; Dam Gade J; Gilbert K; Janse MHA; Hald LS; Werkhoven C; Wu CO; Lima JAC; Young AA Front Cardiovasc Med; 2021; 8():807728. PubMed ID: 35127868 [TBL] [Abstract][Full Text] [Related]
19. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]