These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34307636)

  • 1. Bone-Conduction Sensor Assisted Noise Estimation for Improved Speech Enhancement.
    Lee CH; Rao BD; Garudadri H
    Interspeech; 2018 Sep; 2018():1180-1184. PubMed ID: 34307636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postfilter for Dual Channel Speech Enhancement Using Coherence and Statistical Model-Based Noise Estimation.
    Cheong S; Kim M; Shin JW
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusing Bone-conduction and Air-conduction Sensors for Complex-Domain Speech Enhancement.
    Wang H; Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2022; 30():3134-3143. PubMed ID: 37124143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Speech Spatial Covariance Matrix Estimation for Online Multi-Microphone Speech Enhancement.
    Kim M; Cheong S; Song H; Shin JW
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based distributed node clustering and multi-speaker speech presence probability estimation in wireless acoustic sensor networks.
    Zhao Y; Nielsen JK; Chen J; Christensen MG
    J Acoust Soc Am; 2020 Jun; 147(6):4189. PubMed ID: 32611138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decision-directed speech power spectral density matrix estimation for multichannel speech enhancement.
    Jin YG; Shin JW; Kim NS
    J Acoust Soc Am; 2017 Mar; 141(3):EL228. PubMed ID: 28372120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. .Signal Transparency of Remote Microphone Technology in Pediatric Bone Conduction Device Users.
    Sanchez C; Morgenstein K; Snapp H
    Audiol Neurootol; 2023; 28(5):360-370. PubMed ID: 37271142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-ear microphone speech quality enhancement via adaptive filtering and artificial bandwidth extension.
    Bouserhal RE; Falk TH; Voix J
    J Acoust Soc Am; 2017 Mar; 141(3):1321. PubMed ID: 28372069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of bone conduction microphone placement on intensity and spectrum of transmitted speech items.
    Tran PK; Letowski TR; McBride ME
    J Acoust Soc Am; 2013 Jun; 133(6):3900-8. PubMed ID: 23742344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.
    Na SD; Wei Q; Seong KW; Cho JH; Kim MN
    Technol Health Care; 2018; 26(S1):281-289. PubMed ID: 29710756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech enhancement for cochlear implant recipients.
    Wang D; Hansen JHL
    J Acoust Soc Am; 2018 Apr; 143(4):2244. PubMed ID: 29716262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A priori SNR estimation and noise estimation for speech enhancement.
    Yao R; Zeng Z; Zhu P
    EURASIP J Adv Signal Process; 2016; 2016(1):101. PubMed ID: 27729928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based speech enhancement using a bone-conducted signal.
    Kechichian P; Srinivasan S
    J Acoust Soc Am; 2012 Mar; 131(3):EL262-7. PubMed ID: 22423818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a Bone-Conduction Headset to Improve Speech Discrimination in Children With Otitis Media With Effusion.
    Holland Brown T; Salorio-Corbetto M; Gray R; James Best A; Marriage JE
    Trends Hear; 2019; 23():2331216519858303. PubMed ID: 31464177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of vocal and demographic traits on speech intelligibility over bone conduction.
    Pollard KA; Tran PK; Letowski T
    J Acoust Soc Am; 2015 Apr; 137(4):2060-9. PubMed ID: 25920856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech enhancement via two-stage dual tree complex wavelet packet transform with a speech presence probability estimator.
    Sun P; Qin J
    J Acoust Soc Am; 2017 Feb; 141(2):808. PubMed ID: 28253659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Real-Time Speech Separation Method Based on Camera and Microphone Array Sensors Fusion Approach.
    Liu CF; Ciou WS; Chen PT; Du YC
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.