BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34307737)

  • 1. High-resolution
    Hernandez AM; Becker AE; Hyun Lyu S; Abbey CK; Boone JM
    J Med Imaging (Bellingham); 2021 Sep; 8(5):052107. PubMed ID: 34307737
    [No Abstract]   [Full Text] [Related]  

  • 2. High resolution microcalcification signal profiles for dedicated breast CT.
    Hernandez AM; Becker AE; Lyu SH; Abbey CK; Boone JM
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 33384464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT.
    Hernandez AM; Abbey CK; Ghazi P; Burkett G; Boone JM
    Med Phys; 2020 Jul; 47(7):2869-2880. PubMed ID: 32233091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.
    Cho HM; Ding H; Barber WC; Iwanczyk JS; Molloi S
    Med Phys; 2015 Jul; 42(7):4401-10. PubMed ID: 26133636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Updated breast CT dose coefficients (DgN
    Hernandez AM; Becker AE; Boone JM
    Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric characterization of a dedicated breast computed tomography clinical prototype.
    Sechopoulos I; Feng SS; D'Orsi CJ
    Med Phys; 2010 Aug; 37(8):4110-20. PubMed ID: 20879571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dedicated Photon-Counting CT for Detection and Classification of Microcalcifications: An Intraindividual Comparison With Digital Breast Tomosynthesis.
    Huck LC; Bode M; Zanderigo E; Wilpert C; Raaff V; Dethlefsen E; Wenkel E; Kuhl CK
    Invest Radiol; 2024 Jun; ():. PubMed ID: 38923436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.
    Larsen T; Tseng HW; Trinate R; Fu Z; Alan Chiang JT; Karellas A; Vedantham S
    J Med Imaging (Bellingham); 2024 May; 11(3):033501. PubMed ID: 38756437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visibility of microcalcification in cone beam breast CT: effects of X-ray tube voltage and radiation dose.
    Lai CJ; Shaw CC; Chen L; Altunbas MC; Liu X; Han T; Wang T; Yang WT; Whitman GJ; Tu SJ
    Med Phys; 2007 Jul; 34(7):2995-3004. PubMed ID: 17822008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach.
    Ghazi P; Hernandez AM; Abbey C; Yang K; Boone JM
    Med Phys; 2019 Aug; 46(8):3414-3430. PubMed ID: 31102462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of scatter in breast CT yields improved microcalcification visibility.
    Ghazi P
    Phys Med Biol; 2020 Dec; 65(23):235047. PubMed ID: 33274730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of glandular breast dose between digital mammography, tomosynthesis and breast CT based on anthropomorphic patient-derived breast phantoms.
    Sarno A; Mettivier G; Bliznakova K; Hernandez AM; Boone JM; Russo P
    Phys Med; 2022 May; 97():50-58. PubMed ID: 35395535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study.
    Brombal L; Arfelli F; Delogu P; Donato S; Mettivier G; Michielsen K; Oliva P; Taibi A; Sechopoulos I; Longo R; Fedon C
    Sci Rep; 2019 Nov; 9(1):17778. PubMed ID: 31780707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of synthesized normal-resolution image data generated from high-resolution acquisitions on a commercial CT scanner.
    Hernandez AM; Shin DW; Abbey CK; Seibert JA; Akino N; Goto T; Vaishnav JY; Boedeker KL; Boone JM
    Med Phys; 2020 Oct; 47(10):4775-4785. PubMed ID: 32677085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a patient-specific two-compartment anthropomorphic breast phantom.
    Prionas ND; Burkett GW; McKenney SE; Chen L; Stern RL; Boone JM
    Phys Med Biol; 2012 Jul; 57(13):4293-307. PubMed ID: 22705748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Average glandular dose coefficients for pendant-geometry breast CT using realistic breast phantoms.
    Hernandez AM; Boone JM
    Med Phys; 2017 Oct; 44(10):5096-5105. PubMed ID: 28715130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of statistical iterative reconstruction for dedicated breast CT.
    Makeev A; Glick SJ
    Med Phys; 2013 Aug; 40(8):081904. PubMed ID: 23927318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions.
    Packard NJ; Abbey CK; Yang K; Boone JM
    Med Phys; 2012 Apr; 39(4):1818-30. PubMed ID: 22482604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.
    Hernandez AM; Seibert JA; Boone JM
    Med Phys; 2015 Nov; 42(11):6337-48. PubMed ID: 26520725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability.
    Solomon J; Wilson J; Samei E
    Med Phys; 2015 Aug; 42(8):4941-53. PubMed ID: 26233220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.