These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34308019)

  • 21. Cu
    Lu H; Li L; Wu Q; Mu S; Zhao R; Zheng X; Long C; Li Q; Liu H; Cui C
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13228-13237. PubMed ID: 36877774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Rate CO
    Li H; Liu T; Wei P; Lin L; Gao D; Wang G; Bao X
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14329-14333. PubMed ID: 33837619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Less-Coordinated Atomic Copper-Dimer Boosted Carbon-Carbon Coupling During Electrochemical CO
    Yang K; Sun Y; Chen S; Li M; Zheng M; Ma L; Fan W; Zheng Y; Li Q; Duan J
    Small; 2023 Sep; 19(36):e2301536. PubMed ID: 37081232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential-Dependent Competitive Electroreduction of CO
    Ou L; He Z
    ACS Omega; 2020 Jun; 5(22):12735-12744. PubMed ID: 32548457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Cu
    Bai X; Li Q; Shi L; Niu X; Ling C; Wang J
    Small; 2020 Mar; 16(12):e1901981. PubMed ID: 31192525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing C-C bond formation by surface strain: a computational investigation for C2 and C3 intermediate formation on strained Cu surfaces.
    Chan YT; Huang IS; Tsai MK
    Phys Chem Chem Phys; 2019 Oct; 21(41):22704-22710. PubMed ID: 31498338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. B-Cu-Zn Gas Diffusion Electrodes for CO
    Song Y; Junqueira JRC; Sikdar N; Öhl D; Dieckhöfer S; Quast T; Seisel S; Masa J; Andronescu C; Schuhmann W
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9135-9141. PubMed ID: 33559233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO
    Zhu Q; Hu Y; Chen H; Meng C; Shang Y; Hao C; Wei S; Wang Z; Lu X; Liu S
    Nanoscale; 2023 Feb; 15(5):2106-2113. PubMed ID: 36648138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroreduction Reaction Mechanism of Carbon Dioxide to C
    Zhang XG; Feng S; Zhan C; Wu DY; Zhao Y; Tian ZQ
    J Phys Chem Lett; 2020 Aug; 11(16):6593-6599. PubMed ID: 32787232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO
    Zhang Z; Bian L; Tian H; Liu Y; Bando Y; Yamauchi Y; Wang ZL
    Small; 2022 May; 18(18):e2107450. PubMed ID: 35128790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HKUST-1-derived highly ordered Cu nanosheets with enriched edge sites, stepped (211) surfaces and (200) facets for effective electrochemical CO
    Wang D; Xu J; Zhu Y; Wen L; Ye J; Shen Y; Zeng T; Lu X; Ma J; Wang L; Song S
    Chemosphere; 2021 Sep; 278():130408. PubMed ID: 34126676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the C
    Hong S; Abbas HG; Jang K; Patra KK; Kim B; Choi BU; Song H; Lee KS; Choi PP; Ringe S; Oh J
    Adv Mater; 2023 Feb; 35(8):e2208996. PubMed ID: 36470580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C-C Coupling toward CO
    Zhong Y; Kong X; Song Z; Liu Y; Peng L; Zhang L; Luo X; Zeng J; Geng Z
    Nano Lett; 2022 Mar; 22(6):2554-2560. PubMed ID: 35157470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seeded Growth of Gold-Copper Janus Nanostructures as a Tandem Catalyst for Efficient Electroreduction of CO
    Zheng Y; Zhang J; Ma Z; Zhang G; Zhang H; Fu X; Ma Y; Liu F; Liu M; Huang H
    Small; 2022 May; 18(19):e2201695. PubMed ID: 35398985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalyst Design for Electrochemical Reduction of CO
    Xue Y; Guo Y; Cui H; Zhou Z
    Small Methods; 2021 Oct; 5(10):e2100736. PubMed ID: 34927943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Engineering of the Cu
    Du R; Li T; Wu Q; Wang P; Yang X; Fan Y; Qiu Y; Yan K; Wang P; Zhao Y; Zhao WW; Chen G
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36527-36535. PubMed ID: 35926997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the stability and activity of dilute Cu-based alloys for electrochemical CO
    Weitzner SE; Akhade SA; Kashi AR; Qi Z; Buckley AK; Huo Z; Ma S; Biener M; Wood BC; Kuhl KP; Varley JB; Biener J
    J Chem Phys; 2021 Sep; 155(11):114702. PubMed ID: 34551531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential Link between Cu Surface and Selective CO
    Tomboc GM; Choi S; Kwon T; Hwang YJ; Lee K
    Adv Mater; 2020 Apr; 32(17):e1908398. PubMed ID: 32134526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and Scalable Synthesis of Cuprous Halide-Derived Copper Nano-Architectures for Selective Electrochemical Reduction of Carbon Dioxide.
    Wang H; Matios E; Wang C; Luo J; Lu X; Hu X; Li W
    Nano Lett; 2019 Jun; 19(6):3925-3932. PubMed ID: 31034237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving CO
    Feng J; Wu L; Liu S; Xu L; Song X; Zhang L; Zhu Q; Kang X; Sun X; Han B
    J Am Chem Soc; 2023 May; 145(17):9857-9866. PubMed ID: 37092347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.