These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34308036)

  • 1. Effective Adsorption of Methyl Orange on Organo-Silica Nanoparticles Functionalized by a Multi-Hydroxyl-Containing Gemini Surfactant: A Joint Experimental and Theoretical Study.
    Wang T; Sun Y; Wang S; Li X; Yue Y; Gao Q
    ACS Omega; 2021 Jul; 6(28):18014-18023. PubMed ID: 34308036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: Adsorption studies and model calculations.
    Shen T; Han T; Zhao Q; Ding F; Mao S; Gao M
    Chemosphere; 2022 May; 295():133846. PubMed ID: 35120953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium.
    Li Y; Wang S; Shen Z; Li X; Zhou Q; Sun Y; Wang T; Liu Y; Gao Q
    ACS Omega; 2020 Nov; 5(43):28382-28392. PubMed ID: 33163822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organo-Vermiculites Modified by Aza-Containing Gemini Surfactants: Efficient Uptake of 2-Naphthol and Bromophenol Blue.
    Gong J; Wang T; Zhang W; Han L; Gao M; Chen T; Shen T; Ji Y
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of CoFe
    Simonescu CM; Tătăruş A; Culiţă DC; Stănică N; Ionescu IA; Butoi B; Banici AM
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organo-vermiculites with biphenyl and dipyridyl gemini surfactants for adsorption of bisphenol A: Structure, mechanism and regeneration.
    Shen T; Gao M; Ding F; Zeng H; Yu M
    Chemosphere; 2018 Sep; 207():489-496. PubMed ID: 29807348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr-Doped ZnO Nanoparticles: Synthesis, Characterization, Adsorption Property, and Recyclability.
    Meng A; Xing J; Li Z; Li Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27449-57. PubMed ID: 26600320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions at the silica-peptide interface: the influence of particle size and surface functionality.
    Puddu V; Perry CC
    Langmuir; 2014 Jan; 30(1):227-33. PubMed ID: 24328428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl Orange Adsorption onto Magnetic Fe₃O₄/Carbon (AC, GO, PGO) Nanocomposites.
    Hermosa GC; Liao CS; Wang SF; Sun AA
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5756-5764. PubMed ID: 33980390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter.
    Farkas K; Varsani A; Pang L
    Food Environ Virol; 2015 Sep; 7(3):261-8. PubMed ID: 25342436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.
    Goel C; Bhunia H; Bajpai PK
    J Environ Sci (China); 2015 Jun; 32():238-48. PubMed ID: 26040750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and adsorption characteristics of an heterogenized manganese nanoadsorbent towards methyl orange.
    Arshadi M; Mehravar M; Amiri MJ; Faraji AR
    J Colloid Interface Sci; 2015 Feb; 440():189-97. PubMed ID: 25460705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Functional connector" strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red.
    Shen T; Ji Y; Mao S; Han T; Zhao Q; Wang H; Gao M
    Chemosphere; 2023 Oct; 339():139658. PubMed ID: 37506892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the selective adsorption of silica-sand/anionized-starch composite for removal of dyes and Cupper(II) from their aqueous mixtures.
    Li P; Gao B; Li A; Yang H
    Int J Biol Macromol; 2020 Apr; 149():1285-1293. PubMed ID: 32044372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye.
    Nesic AR; Velickovic SJ; Antonovic DG
    J Hazard Mater; 2012 Mar; 209-210():256-63. PubMed ID: 22305598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MnO(x)-modified ZnAl-LDOs as high-performance adsorbent for the removal of methyl orange.
    Zhang YX; Hao XD; Wang T; Meng YX; Han X
    Dalton Trans; 2014 May; 43(18):6667-76. PubMed ID: 24626563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange.
    Tao X; Wu Y; Cha L
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19828-19842. PubMed ID: 31090012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing Gemini surfactants.
    Liu Y; Gao M; Gu Z; Luo Z; Ye Y; Lu L
    J Hazard Mater; 2014 Feb; 267():71-80. PubMed ID: 24413053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Speed and High-Capacity Removal of Methyl Orange and Malachite Green in Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies.
    Ali I; Burakova I; Galunin E; Burakov A; Mkrtchyan E; Melezhik A; Kurnosov D; Tkachev A; Grachev V
    ACS Omega; 2019 Nov; 4(21):19293-19306. PubMed ID: 31763553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies.
    Arshadi M; Mousavinia F; Amiri MJ; Faraji AR
    J Colloid Interface Sci; 2016 Dec; 483():118-131. PubMed ID: 27552420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.