These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34308379)
1. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area. Eren GO; Sadeghi S; Shahzad M; Nizamoglu S STAR Protoc; 2021 Sep; 2(3):100664. PubMed ID: 34308379 [TBL] [Abstract][Full Text] [Related]
2. High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. Sadeghi S; Bahmani Jalali H; Srivastava SB; Melikov R; Baylam I; Sennaroglu A; Nizamoglu S iScience; 2020 Jul; 23(7):101272. PubMed ID: 32590328 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. Xie R; Peng X J Am Chem Soc; 2009 Aug; 131(30):10645-51. PubMed ID: 19588970 [TBL] [Abstract][Full Text] [Related]
4. Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators. Sadeghi S; Bahmani Jalali H; Melikov R; Ganesh Kumar B; Mohammadi Aria M; Ow-Yang CW; Nizamoglu S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12975-12982. PubMed ID: 29589740 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution. Brown RP; Gallagher MJ; Fairbrother DH; Rosenzweig Z Langmuir; 2018 Nov; 34(46):13924-13934. PubMed ID: 30351964 [TBL] [Abstract][Full Text] [Related]
6. High efficiency and nearly cubic power dependence of below-band-edge photoluminescence in water-soluble, copper-doped ZnSe/ZnS quantum dots. Xing G; Ji W; Zheng Y; Ying JY Opt Express; 2008 Apr; 16(8):5710-5. PubMed ID: 18542679 [TBL] [Abstract][Full Text] [Related]
7. Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Kim S; Park J; Kim T; Jang E; Jun S; Jang H; Kim B; Kim SW Small; 2011 Jan; 7(1):70-3. PubMed ID: 21132706 [No Abstract] [Full Text] [Related]
8. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na Khafajeh R; Molaei M; Karimipour M Luminescence; 2017 Jun; 32(4):581-587. PubMed ID: 27699995 [TBL] [Abstract][Full Text] [Related]
9. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging. Che D; Zhu X; Wang H; Duan Y; Zhang Q; Li Y J Colloid Interface Sci; 2016 Feb; 463():1-7. PubMed ID: 26513730 [TBL] [Abstract][Full Text] [Related]
10. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. Tamang S; Beaune G; Texier I; Reiss P ACS Nano; 2011 Dec; 5(12):9392-402. PubMed ID: 22035355 [TBL] [Abstract][Full Text] [Related]
11. Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. Sadeghi S; Melikov R; Bahmani Jalali H; Karatum O; Srivastava SB; Conkar D; Firat-Karalar EN; Nizamoglu S ACS Appl Mater Interfaces; 2019 Mar; 11(9):8710-8716. PubMed ID: 30777750 [TBL] [Abstract][Full Text] [Related]
12. Size-dependent dual emission of Cu,Mn:ZnSe QDs: Controlling both emission wavelength and intensity. Xu S; Jiang H; Dong R; Lv C; Wang C; Cui Y Luminescence; 2017 Jun; 32(4):474-480. PubMed ID: 28139888 [TBL] [Abstract][Full Text] [Related]
13. Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. Kim SW; Zimmer JP; Ohnishi S; Tracy JB; Frangioni JV; Bawendi MG J Am Chem Soc; 2005 Aug; 127(30):10526-32. PubMed ID: 16045339 [TBL] [Abstract][Full Text] [Related]
14. Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots. Beloglazova NV; Sobolev AM; Tessier MD; Hens Z; Goryacheva IY; De Saeger S Methods; 2017 Mar; 116():141-148. PubMed ID: 28126557 [TBL] [Abstract][Full Text] [Related]
15. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer. Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670 [TBL] [Abstract][Full Text] [Related]
16. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed Saeboe AM; Nikiforov AY; Toufanian R; Kays JC; Chern M; Casas JP; Han K; Piryatinski A; Jones D; Dennis AM Nano Lett; 2021 Apr; 21(7):3271-3279. PubMed ID: 33755481 [TBL] [Abstract][Full Text] [Related]
18. Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots. Ning Z; Tian H; Yuan C; Fu Y; Qin H; Sun L; Ă…gren H Chem Commun (Camb); 2011 Feb; 47(5):1536-8. PubMed ID: 21103496 [TBL] [Abstract][Full Text] [Related]
19. Enriching Mn-Doped ZnSe Quantum Dots onto Mesoporous Silica Nanoparticles for Enhanced Fluorescence/Magnetic Resonance Imaging Dual-Modal Bio-Imaging. Zhou R; Sun S; Li C; Wu L; Hou X; Wu P ACS Appl Mater Interfaces; 2018 Oct; 10(40):34060-34067. PubMed ID: 30211537 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]