BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 34308937)

  • 21. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy.
    Kurzthaler C; Devailly C; Arlt J; Franosch T; Poon WCK; Martinez VA; Brown AT
    Phys Rev Lett; 2018 Aug; 121(7):078001. PubMed ID: 30169062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entropy production of a Brownian ellipsoid in the overdamped limit.
    Marino R; Eichhorn R; Aurell E
    Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escape kinetics of self-propelled particles from a circular cavity.
    Debnath T; Chaudhury P; Mukherjee T; Mondal D; Ghosh PK
    J Chem Phys; 2021 Nov; 155(19):194102. PubMed ID: 34800947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of Active Brownian Particles in Plasma.
    Arkar K; Vasiliev MM; Petrov OF; Kononov EA; Trukhachev FM
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial self-propelled particles.
    Caprini L; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jan; 154(2):024902. PubMed ID: 33445896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active Brownian motion with memory delay induced by a viscoelastic medium.
    Sprenger AR; Bair C; Löwen H
    Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry.
    Chen WL; Chuang HS
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Self-Propelled Janus Particles in Viscoelastic Fluids.
    Gomez-Solano JR; Blokhuis A; Bechinger C
    Phys Rev Lett; 2016 Apr; 116(13):138301. PubMed ID: 27082004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistent motion of a Brownian particle subject to repulsive feedback with time delay.
    Kopp RA; Klapp SHL
    Phys Rev E; 2023 Feb; 107(2-1):024611. PubMed ID: 36932532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
    Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R
    Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory.
    Joo S; Durang X; Lee OC; Jeon JH
    Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of self-propelled tracer particles inside a polymer network.
    Kumar P; Chakrabarti R
    Phys Chem Chem Phys; 2023 Jan; 25(3):1937-1946. PubMed ID: 36541408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-dimensional motion of Brownian swimmers in linear flows.
    Sandoval M; Jimenez A
    J Biol Phys; 2016 Mar; 42(2):199-212. PubMed ID: 26428909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brownian particles in supramolecular polymer solutions.
    van der Gucht J; Besseling NA; Knoben W; Bouteiller L; Cohen Stuart MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051106. PubMed ID: 12786133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics.
    Isele-Holder RE; Elgeti J; Gompper G
    Soft Matter; 2015 Sep; 11(36):7181-90. PubMed ID: 26256415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.