These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34309033)

  • 1. Secondary phloem in arborescent lycopsids.
    D'Antonio MP; Boyce CK
    New Phytol; 2021 Nov; 232(3):967-972. PubMed ID: 34309033
    [No Abstract]   [Full Text] [Related]  

  • 2. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium.
    Mäkilä R; Wybouw B; Smetana O; Vainio L; Solé-Gil A; Lyu M; Ye L; Wang X; Siligato R; Jenness MK; Murphy AS; Mähönen AP
    Nat Plants; 2023 Apr; 9(4):631-644. PubMed ID: 36997686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast or slow for the arborescent lycopsids?: Response to Thomas & Cleal (2018) 'Arborescent lycophyte growth in the late Carboniferous coal swamps'.
    Kevin Boyce C; DiMichele WA
    New Phytol; 2018 May; 218(3):891-893. PubMed ID: 29457227
    [No Abstract]   [Full Text] [Related]  

  • 4. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus.
    Zhu Y; Song D; Sun J; Wang X; Li L
    Mol Plant; 2013 Jul; 6(4):1331-43. PubMed ID: 23288865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifacial cambium stem cells generate xylem and phloem during radial plant growth.
    Shi D; Lebovka I; López-Salmerón V; Sanchez P; Greb T
    Development; 2019 Jan; 146(1):. PubMed ID: 30626594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High levels of auxin signalling define the stem-cell organizer of the vascular cambium.
    Smetana O; Mäkilä R; Lyu M; Amiryousefi A; Sánchez Rodríguez F; Wu MF; Solé-Gil A; Leal Gavarrón M; Siligato R; Miyashima S; Roszak P; Blomster T; Reed JW; Broholm S; Mähönen AP
    Nature; 2019 Jan; 565(7740):485-489. PubMed ID: 30626967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast.
    Dié A; Kitin P; Kouamé FN; Van den Bulcke J; Van Acker J; Beeckman H
    Ann Bot; 2012 Sep; 110(4):861-73. PubMed ID: 22805529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Callixylon (Archaeopteridales, Progymnospermopsida) trunk with preserved secondary phloem from the Late Devonian of Morocco.
    Decombeix AL; Meyer-Berthaud B
    Am J Bot; 2013 Nov; 100(11):2219-30. PubMed ID: 24169429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium.
    Begum S; Shibagaki M; Furusawa O; Nakaba S; Yamagishi Y; Yoshimoto J; Jin HO; Sano Y; Funada R
    Planta; 2012 Jan; 235(1):165-79. PubMed ID: 21861112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylem versus phloem in secondary growth: a balancing act mediated by gibberellins.
    Carlsbecker A; Augstein F
    J Exp Bot; 2021 May; 72(10):3489-3492. PubMed ID: 33948652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of an Indoleacetic Acid-oxidase-inhibitor in the Storage Root of Daucus carota.
    Jacobson BS; Caplin SM
    Plant Physiol; 1967 Apr; 42(4):578-84. PubMed ID: 16656541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cambium pre-activation in beech correlates with a strong temporary increase of calcium in cambium and phloem but not in xylem cells.
    Follet-Gueye ML; Verdus MC; Demarty M; Thellier M; Ripoll C
    Cell Calcium; 1998 Sep; 24(3):205-11. PubMed ID: 9883274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections in the cambium, receptors in the ring.
    Bagdassarian KS; Brown CM; Jones ET; Etchells P
    Curr Opin Plant Biol; 2020 Oct; 57():96-103. PubMed ID: 32866742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal development of cambial activity in relation to xylem formation in Chinese fir.
    Wu H; Xu H; Li H; Wei D; Lin J; Li X
    J Plant Physiol; 2016 May; 195():23-30. PubMed ID: 26986869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arborescent lycopsid periderm production was limited.
    D'Antonio MP; Boyce CK
    New Phytol; 2020 Oct; 228(2):741-751. PubMed ID: 32506426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport.
    Spicer R
    J Exp Bot; 2014 Apr; 65(7):1829-48. PubMed ID: 24453225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phloem on canopy dieback, tested with manipulations and a canker pathogen in the Corylus avellana/Anisogramma anomala host/pathogen system.
    Lachenbruch B; Zhao JP
    Tree Physiol; 2019 Jul; 39(7):1086-1098. PubMed ID: 30938425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dynamics of Cambial Stem Cell Activity.
    Fischer U; Kucukoglu M; Helariutta Y; Bhalerao RP
    Annu Rev Plant Biol; 2019 Apr; 70():293-319. PubMed ID: 30822110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcript Accumulation Dynamics of Phenylpropanoid Pathway Genes in the Maturing Xylem and Phloem of Picea abies during Latewood Formation.
    Emiliani G; Traversi ML; Anichini M; Giachi G; Giovannelli A
    J Integr Plant Biol; 2011 Oct; 53(10):783-99. PubMed ID: 21767344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Seasonal development of phloem in Scots pine stems].
    Antonova GF; Stasova VV
    Ontogenez; 2006; 37(5):368-83. PubMed ID: 17066978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.