These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34309033)

  • 21. [Seasonal development of phloem in Siberian larch stems].
    Antonova GF; Stasova VV
    Ontogenez; 2008; 39(4):259-72. PubMed ID: 18792638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CLE peptides in vascular development.
    Qiang Y; Wu J; Han H; Wang G
    J Integr Plant Biol; 2013 Apr; 55(4):389-94. PubMed ID: 23473393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of vascular cell division.
    Campbell L; Turner S
    J Exp Bot; 2017 Jan; 68(1):27-43. PubMed ID: 27965363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.
    Gričar J; Prislan P; Gryc V; Vavrčík H; de Luis M; Cufar K
    Tree Physiol; 2014 Aug; 34(8):869-81. PubMed ID: 24728295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phloem wedges in Malpighiaceae: origin, structure, diversification, and systematic relevance.
    Quintanar-Castillo A; Pace MR
    Evodevo; 2022 Apr; 13(1):11. PubMed ID: 35484568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens.
    Gričar J; Zavadlav S; Jyske T; Lavrič M; Laakso T; Hafner P; Eler K; Vodnik D
    Tree Physiol; 2019 Feb; 39(2):222-233. PubMed ID: 30239939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arbuscular mycorrhizal-like fungi in Carboniferous arborescent lycopsids.
    Krings M; Taylor TN; Taylor EL; Dotzler N; Walker C
    New Phytol; 2011 Jul; 191(2):311-314. PubMed ID: 21557748
    [No Abstract]   [Full Text] [Related]  

  • 28. The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae).
    Pace MR; Lohmann LG; Angyalossy V
    Evol Dev; 2009; 11(5):465-79. PubMed ID: 19754704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems.
    Fu X; Su H; Liu S; Du X; Xu C; Luo K
    New Phytol; 2021 May; 230(4):1476-1488. PubMed ID: 33540480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.
    Chen JJ; Zhang J; He XQ
    Physiol Plant; 2014 Jun; 151(2):147-55. PubMed ID: 24111607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv.
    Pang Y; Zhang J; Cao J; Yin SY; He XQ; Cui KM
    J Exp Bot; 2008; 59(6):1341-51. PubMed ID: 18375933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.
    Chen JJ; Wang LY; Immanen J; Nieminen K; Spicer R; Helariutta Y; Zhang J; He XQ
    New Phytol; 2019 Oct; 224(1):188-201. PubMed ID: 31230359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions.
    Gričar J; Prislan P; de Luis M; Gryc V; Hacurová J; Vavrčík H; Čufar K
    Front Plant Sci; 2015; 6():730. PubMed ID: 26442044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.
    Obudulu O; Bygdell J; Sundberg B; Moritz T; Hvidsten TR; Trygg J; Wingsle G
    BMC Genomics; 2016 Feb; 17():119. PubMed ID: 26887814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in
    Lourenço A; Rencoret J; Chemetova C; Gominho J; Gutiérrez A; Del Río JC; Pereira H
    Front Plant Sci; 2016; 7():1612. PubMed ID: 27833631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.
    Hirakawa Y; Shinohara H; Kondo Y; Inoue A; Nakanomyo I; Ogawa M; Sawa S; Ohashi-Ito K; Matsubayashi Y; Fukuda H
    Proc Natl Acad Sci U S A; 2008 Sep; 105(39):15208-13. PubMed ID: 18812507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterned cell determination in a plant tissue: the secondary phloem of trees.
    Barlow P
    Bioessays; 2005 May; 27(5):533-41. PubMed ID: 15832381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia.
    Aloni R; Barnett JR
    Planta; 1996 Apr; 198(4):595-603. PubMed ID: 28321670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ectopic Vascular Induction in Arabidopsis Cotyledons for Sequential Analysis of Phloem Differentiation.
    Nurani AM; Kondo Y; Fukuda H
    Methods Mol Biol; 2018; 1830():149-159. PubMed ID: 30043370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.