These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 34309044)

  • 1. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds.
    Anita Lett J; Sagadevan S; Léonard E; Fatimah I; Motalib Hossain MA; Mohammad F; Al-Lohedan HA; Paiman S; Alshahateet SF; Abd Razak SI; Johan MR
    Artif Organs; 2021 Dec; 45(12):1501-1512. PubMed ID: 34309044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.
    Guo F; Wang E; Yang Y; Mao Y; Liu C; Bu W; Li P; Zhao L; Jin Q; Liu B; Wang S; You H; Long Y; Zhou N; Guo W
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124728. PubMed ID: 37150372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS
    J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications.
    Donya H; Darwesh R; Ahmed MK
    Int J Biol Macromol; 2021 Sep; 186():897-908. PubMed ID: 34273344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a composite polylactic acid-hydroxyapatite 3D-printing filament for bone-regeneration.
    Amnael Orozco-Díaz C; Moorehead R; Reilly GC; Gilchrist F; Miller C
    Biomed Phys Eng Express; 2020 Feb; 6(2):025007. PubMed ID: 33438633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass.
    El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR
    Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of mechanically compliant 3D composite scaffolds for bone tissue engineering applications.
    Anandan D; Mary Stella S; Arunai Nambiraj N; Vijayalakshmi U; Jaiswal AK
    J Biomed Mater Res A; 2018 Dec; 106(12):3267-3274. PubMed ID: 30289613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds.
    Gerdes S; Mostafavi A; Ramesh S; Memic A; Rivero IV; Rao P; Tamayol A
    Tissue Eng Part A; 2020 Mar; 26(5-6):279-291. PubMed ID: 31964254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles.
    Li G; Qin S; Zhang D; Liu X
    Nanotechnology; 2019 Jul; 30(29):295101. PubMed ID: 30917342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.
    Cox SC; Thornby JA; Gibbons GJ; Williams MA; Mallick KK
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():237-47. PubMed ID: 25492194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.
    Yeon YK; Park HS; Lee JM; Lee JS; Lee YJ; Sultan MT; Seo YB; Lee OJ; Kim SH; Park CH
    J Biomater Sci Polym Ed; 2018; 29(7-9):894-906. PubMed ID: 28934914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.