These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34309050)

  • 1. Bayes estimate of primary threshold in clusterwise functional magnetic resonance imaging inferences.
    Ge Y; Hare S; Chen G; Waltz JA; Kochunov P; Elliot Hong L; Chen S
    Stat Med; 2021 Nov; 40(25):5673-5689. PubMed ID: 34309050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2018 Jun; 49():101-115. PubMed ID: 29408478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
    Eklund A; Nichols TE; Knutsson H
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7900-5. PubMed ID: 27357684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing methods of analyzing fMRI statistical parametric maps.
    Marchini J; Presanis A
    Neuroimage; 2004 Jul; 22(3):1203-13. PubMed ID: 15219592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced false discovery rate using Gaussian mixture models for thresholding fMRI statistical maps.
    Pendse G; Borsook D; Becerra L
    Neuroimage; 2009 Aug; 47(1):231-61. PubMed ID: 19269334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computationally efficient, exploratory approach to brain connectivity incorporating false discovery rate control, a priori knowledge, and group inference.
    Liu A; Li J; Wang ZJ; McKeown MJ
    Comput Math Methods Med; 2012; 2012():967380. PubMed ID: 23251232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical null and false discovery rate analysis in neuroimaging.
    Schwartzman A; Dougherty RF; Lee J; Ghahremani D; Taylor JE
    Neuroimage; 2009 Jan; 44(1):71-82. PubMed ID: 18547821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Updated Survey on Statistical Thresholding and Sample Size of fMRI Studies.
    Yeung AWK
    Front Hum Neurosci; 2018; 12():16. PubMed ID: 29434545
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluating methods of correcting for multiple comparisons implemented in SPM12 in social neuroscience fMRI studies: an example from moral psychology.
    Han H; Glenn AL
    Soc Neurosci; 2018 Jun; 13(3):257-267. PubMed ID: 28446105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equitable Thresholding and Clustering: A Novel Method for Functional Magnetic Resonance Imaging Clustering in AFNI.
    Cox RW
    Brain Connect; 2019 Sep; 9(7):529-538. PubMed ID: 31115252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Second-Level Inference in fMRI Analysis.
    Roels SP; Loeys T; Moerkerke B
    Comput Intell Neurosci; 2016; 2016():1068434. PubMed ID: 26819578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.
    Fadili MJ; Bullmore ET
    Neuroimage; 2004 Nov; 23(3):1112-28. PubMed ID: 15528111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.
    Slotnick SD
    Cogn Neurosci; 2017 Jul; 8(3):141-143. PubMed ID: 28002981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Input permutation method to detect active voxels in fMRI study.
    Lee SH; Lim J; Park D; Biswal BB; Petkova E
    Magn Reson Imaging; 2012 Dec; 30(10):1495-504. PubMed ID: 22819177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments.
    Spencer D; Guhaniyogi R; Prado R
    Psychometrika; 2020 Dec; 85(4):845-869. PubMed ID: 32949345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting activations in PET and fMRI: levels of inference and power.
    Friston KJ; Holmes A; Poline JB; Price CJ; Frith CD
    Neuroimage; 1996 Dec; 4(3 Pt 1):223-35. PubMed ID: 9345513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated cluster-wise significance measure for fMRI analysis.
    Ge Y; Chen G; Waltz JA; Hong LE; Kochunov P; Chen S
    Hum Brain Mapp; 2022 Jun; 43(8):2444-2459. PubMed ID: 35233859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.
    Sojoudi A; Goodyear BG
    Hum Brain Mapp; 2016 Dec; 37(12):4566-4580. PubMed ID: 27464464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain networks construction using Bayes FDR and average power function.
    Quatto P; Margaritella N; Costantini I; Baglio F; Garegnani M; Nemni R; Pugnetti L
    Stat Methods Med Res; 2020 Mar; 29(3):866-878. PubMed ID: 31088219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.