BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34309168)

  • 1. Spectroscopic Characterization of a Reactive [Cu
    Warm K; Tripodi G; Andris E; Mebs S; Kuhlmann U; Dau H; Hildebrandt P; Roithová J; Ray K
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):23018-23024. PubMed ID: 34309168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.
    Hoover JM; Ryland BL; Stahl SS
    J Am Chem Soc; 2013 Feb; 135(6):2357-67. PubMed ID: 23317450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives: a Cu(III)2O2 intermediate exhibiting higher C-H activation.
    Kajita Y; Arii H; Saito T; Saito Y; Nagatomo S; Kitagawa T; Funahashi Y; Ozawa T; Masuda H
    Inorg Chem; 2007 Apr; 46(8):3322-35. PubMed ID: 17371011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dinuclear copper-dioxygen intermediates supported by polyamine ligands.
    Teramae S; Osako T; Nagatomo S; Kitagawa T; Fukuzumi S; Itoh S
    J Inorg Biochem; 2004 May; 98(5):746-57. PubMed ID: 15134920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral tetranuclear and dinuclear copper(ii) complexes for TEMPO-mediated aerobic oxidation of alcohols: are four metal centres better than two?
    Zhang G; Proni G; Zhao S; Constable EC; Housecroft CE; Neuburger M; Zampese JA
    Dalton Trans; 2014 Aug; 43(32):12313-20. PubMed ID: 24986135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems.
    Hoover JM; Ryland BL; Stahl SS
    ACS Catal; 2013 Nov; 3(11):2599-2605. PubMed ID: 24558634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)(2)/pyridine including identification of the catalyst resting state and the origin of nonlinear [catalyst] dependence.
    Steinhoff BA; Guzei IA; Stahl SS
    J Am Chem Soc; 2004 Sep; 126(36):11268-78. PubMed ID: 15355108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxygen-binding kinetics and thermodynamics of a series of dicopper(I) complexes with bis[2-(2-pyridyl)ethyl]amine tridendate chelators forming side-on peroxo-bridged dicopper(II) adducts.
    Liang HC; Karlin KD; Dyson R; Kaderli S; Jung B; Zuberbühler AD
    Inorg Chem; 2000 Dec; 39(26):5884-94. PubMed ID: 11188519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand effect on reversible conversion between copper(I) and bis(mu-oxo)dicopper(III) complex with a sterically hindered tetradentate tripodal ligand and monooxygenase activity of bis(mu-oxo)dicopper(III) complex.
    Mizuno M; Hayashi H; Fujinami S; Furutachi H; Nagatomo S; Otake S; Uozumi K; Suzuki M; Kitagawa T
    Inorg Chem; 2003 Dec; 42(25):8534-44. PubMed ID: 14658910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity.
    Nutting JE; Mao K; Stahl SS
    J Am Chem Soc; 2021 Jul; 143(28):10565-10570. PubMed ID: 34232661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemilabile Amine-Functionalized Efficient Azo-Aromatic Cu-Catalysts Inspired by Galactose Oxidase: Impact of Amine Sidearm on Catalytic Aerobic Oxidation of Alcohols.
    Khatua M; Goswami B; Hans S; Kamal ; Mazumder S; Samanta S
    Inorg Chem; 2022 Nov; 61(44):17777-17789. PubMed ID: 36278950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerium-Complex-Catalyzed Oxidation of Arylmethanols under Atmospheric Pressure of Dioxygen and Its Mechanism through a Side-On μ-Peroxo Dicerium(IV) Complex.
    Paul M; Shirase S; Morimoto Y; Mathey L; Murugesapandian B; Tanaka S; Itoh S; Tsurugi H; Mashima K
    Chemistry; 2016 Mar; 22(12):4008-14. PubMed ID: 26797722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the Copper/TEMPO-Catalyzed Aerobic Oxidation of Alcohols.
    Iron MA; Szpilman AM
    Chemistry; 2017 Jan; 23(6):1368-1378. PubMed ID: 27862437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.
    Hoover JM; Stahl SS
    J Am Chem Soc; 2011 Oct; 133(42):16901-10. PubMed ID: 21861488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Catalytic Activity of TEMPO-Mediated Aerobic Oxidation of Alcohols via Redox-Active Metal-Organic Framework Nodes.
    Wang B; Zhang J; Xue Y; Chong Y; Zhao D; Cheng H; Tian L; Zhuang J
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.