These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 34309384)

  • 1. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition Layer Assisted Synthesis of Defect Free Amine-Phosphine Based InP QDs.
    Wang J; Ba G; Meng J; Yang S; Tian S; Zhang M; Huang F; Zheng K; Pullerits T; Tian J
    Nano Lett; 2024 Jul; 24(29):8894-8901. PubMed ID: 38990690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots.
    Lee JE; Lee CJ; Lee SJ; Jeong UH; Park JG
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impurity Location-Dependent Relaxation Dynamics of Cu:CdS Quantum Dots.
    Choi D; Pyo JY; Jang DJ
    Nanoscale Res Lett; 2017 Dec; 12(1):49. PubMed ID: 28101854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Reverse Type-II InP/Zn
    Xu D; Shen LL; Qin ZK; Yan S; Wang N; Wang J; Gao YJ
    Inorg Chem; 2024 Jul; 63(27):12582-12592. PubMed ID: 38917407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambipolar Charge Storage in Type-I Core/Shell Semiconductor Quantum Dots toward Optoelectronic Transistor-Based Memories.
    Hu H; Wen G; Wen J; Huang LB; Zhao M; Wu H; Sun Z
    Adv Sci (Weinh); 2021 Aug; 8(16):e2100513. PubMed ID: 34174170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks.
    Tiede DO; Romero-Pérez C; Koch KA; Ucer KB; Calvo ME; Srimath Kandada AR; Galisteo-López JF; Míguez H
    ACS Nano; 2024 Jan; 18(3):2325-2334. PubMed ID: 38206821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots.
    Richardson A; Alster J; Khoroshyy P; Psencik J; Valenta J; Tuma R; Critchley K
    ACS Omega; 2024 Apr; 9(15):17114-17124. PubMed ID: 38645370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots.
    Hai Y; Gahlot K; Tanchev M; Mutalik S; Tekelenburg EK; Hong J; Ahmadi M; Piveteau L; Loi MA; Protesescu L
    J Am Chem Soc; 2024 May; 146(18):12808-12818. PubMed ID: 38668701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface defects repair of core/shell quantum dots through halide ion penetration.
    Yuan C; He M; Liao X; Liu M; Zhang Q; Wan Q; Qu Z; Kong L; Li L
    Chem Sci; 2023 Nov; 14(45):13119-13125. PubMed ID: 38023521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the Shades of Red Emission in InP/ZnSe/ZnS Nanocrystals with Narrow Full Width for Fabrication of Light-Emitting Diodes.
    Soheyli E; Biçer A; Ozel SS; Sahin Tiras K; Mutlugun E
    ACS Omega; 2023 Oct; 8(42):39690-39698. PubMed ID: 37901544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Blue and Highly Emissive ZnS-Passivated InP QDs: Facile Synthesis, Characterization, and Deciphering of Their Ultrafast-to-Slow Photodynamics.
    Rakshit S; Cohen B; Gutiérrez M; El-Ballouli AO; Douhal A
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3099-3111. PubMed ID: 36608171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots.
    Ubbink RF; Almeida G; Iziyi H; du Fossé I; Verkleij R; Ganapathy S; van Eck ERH; Houtepen AJ
    Chem Mater; 2022 Nov; 34(22):10093-10103. PubMed ID: 36439318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes.
    Jiang X; Fan Z; Luo L; Wang L
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSe
    Pu YC; Fan HC; Chang JC; Chen YH; Tseng SW
    J Phys Chem Lett; 2021 Aug; 12(30):7194-7200. PubMed ID: 34309384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lattice Disorder on Exciton Dynamics in Copper-Doped InP/ZnSe
    Chou KC; Li LC; Tsai KA; Zeitz DC; Pu YC; Zhang JZ
    J Phys Chem Lett; 2024 Apr; 15(16):4311-4318. PubMed ID: 38619190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation Exchange Synthesis of Aliovalent Doped InP QDs and Their ZnSe
    Du R; Li X; Li Y; Li Y; Hou T; Li Y; Qiao C; Zhang J
    J Phys Chem Lett; 2023 Jan; 14(3):670-676. PubMed ID: 36637473
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.