These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1219 related articles for article (PubMed ID: 34309417)
21. Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction. Shi W; Zheng J; Zhang J; Dong X; Li Z; Xiao Y; Li Q; Huang X; Du Y Tissue Eng Regen Med; 2024 Aug; 21(6):943-957. PubMed ID: 38937423 [TBL] [Abstract][Full Text] [Related]
22. Decellularized matrix bioink with gelatin methacrylate for simultaneous improvements in printability and biofunctionality. Seok JM; Ahn M; Kim D; Lee JS; Lee D; Choi MJ; Yeo SJ; Lee JH; Lee K; Kim BS; Park SA Int J Biol Macromol; 2024 Mar; 262(Pt 2):130194. PubMed ID: 38360222 [TBL] [Abstract][Full Text] [Related]
23. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731 [TBL] [Abstract][Full Text] [Related]
24. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
25. Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. Lee S; Lee HS; Chung JJ; Kim SH; Park JW; Lee K; Jung Y Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809175 [TBL] [Abstract][Full Text] [Related]
26. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
27. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related]
28. Three-Dimensional Microfilament Printing of a Decellularized Extracellular Matrix (dECM) Bioink Using a Microgel Printing Bath for Nerve Graft Fabrication and the Effectiveness of dECM Graft Combined with a Polycaprolactone Conduit. Min K; Kong JS; Kim J; Kim J; Gao G; Cho DW; Han HH ACS Appl Bio Mater; 2022 Apr; 5(4):1591-1603. PubMed ID: 35324142 [TBL] [Abstract][Full Text] [Related]
29. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
30. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451 [TBL] [Abstract][Full Text] [Related]
31. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
32. 3D-engineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. Gong H; Fei H; Xu Q; Gou M; Chen HH J Biomed Mater Res A; 2020 Mar; 108(3):805-813. PubMed ID: 31808270 [TBL] [Abstract][Full Text] [Related]
33. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
34. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting. Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414 [TBL] [Abstract][Full Text] [Related]
35. 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures. Khati V; Ramachandraiah H; Pati F; Svahn HA; Gaudenzi G; Russom A Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884324 [TBL] [Abstract][Full Text] [Related]
36. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
38. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. Das S; Valoor R; Ratnayake P; Basu B ACS Appl Bio Mater; 2024 May; 7(5):2809-2835. PubMed ID: 38602318 [TBL] [Abstract][Full Text] [Related]
39. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
40. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Shukla P; Bera AK; Yeleswarapu S; Pati F Macromol Biosci; 2024 Aug; 24(8):e2400035. PubMed ID: 38685795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]