These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34309551)

  • 1. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs.
    Kakar K; Bhat JP; Thontadarya S
    J Int Adv Otol; 2021 Jul; 17(4):313-318. PubMed ID: 34309551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves.
    Engler S; Gaudrain E; de Kleine E; van Dijk P
    J Acoust Soc Am; 2022 Feb; 151(2):1055. PubMed ID: 35232113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.
    Micheyl C; Collet L
    Scand Audiol; 1994; 23(3):171-8. PubMed ID: 7997834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No Influence of Musicianship on the Effect of Contralateral Stimulation on Frequency Selectivity.
    Tarnowska E; Wicher A; Moore BCJ
    Trends Hear; 2020; 24():2331216520939776. PubMed ID: 32840175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human.
    Wang Y; Gong Q; Zhang T
    Biomed Eng Online; 2016 May; 15(1):51. PubMed ID: 27160830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitch discrimination: are professional musicians better than non-musicians?
    Kishon-Rabin L; Amir O; Vexler Y; Zaltz Y
    J Basic Clin Physiol Pharmacol; 2001; 12(2 Suppl):125-43. PubMed ID: 11605682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates.
    Wilson US; Browning-Kamins J; Boothalingam S; Moleti A; Sisto R; Dhar S
    J Speech Lang Hear Res; 2020 Jun; 63(6):1958-1968. PubMed ID: 32464079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
    Charaziak KK; Souza PE; Siegel JH
    Int J Audiol; 2015 Feb; 54(2):96-105. PubMed ID: 25290042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No Effect of Musical Training on Frequency Selectivity Estimated Using Three Methods.
    Moore BCJ; Wan J; Varathanathan A; Naddell S; Baer T
    Trends Hear; 2019; 23():2331216519841980. PubMed ID: 31081487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Otoacoustic emission nonlinear distortions in musicians with absolute and relative pitch].
    Morawski K; Sliwińska-Kowalska M; Namysłowski G; Dulikowska H
    Otolaryngol Pol; 1999; 53(3):307-13. PubMed ID: 10481502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous otoacoustic emissions in schoolchildren.
    Jedrzejczak WW; Kochanek K; Pilka E; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():67-71. PubMed ID: 27619031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans.
    Quaranta N; Scaringi A; Nahum S; Quaranta A
    Acta Otolaryngol; 2005 May; 125(5):520-3. PubMed ID: 16092544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced frequency discrimination near the hearing loss cut-off: a consequence of central auditory plasticity induced by cochlear damage?
    Thai-Van H; Micheyl C; Moore BC; Collet L
    Brain; 2003 Oct; 126(Pt 10):2235-45. PubMed ID: 12847078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual Differences in Behavioural Decision Weights Related to Irregularities in Cochlear Mechanics.
    Lee J; Heo I; Chang AC; Bond K; Stoelinga C; Lutfi R; Long G
    Adv Exp Med Biol; 2016; 894():457-465. PubMed ID: 27080687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Otoacoustic Emissions in
    Cheatham MA; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    eNeuro; 2018; 5(6):. PubMed ID: 30627650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.