These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34309553)

  • 1. Contralateral Suppression of Spontaneous Otoacoustic Emissions in Individuals With Auditory Neuropathy Spectrum Disorder.
    Prabhu P; Joshi K; Muhammad JK; Nisha KV
    J Int Adv Otol; 2021 Jul; 17(4):325-329. PubMed ID: 34309553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender differences in contralateral suppression of spontaneous otoacoustic emissions in individuals with auditory neuropathy spectrum disorders.
    Nisha KV; Loganathan MK; Prabhu P
    Eur Arch Otorhinolaryngol; 2023 Mar; 280(3):1493-1499. PubMed ID: 36374345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spontaneous otoacoustic emissions and efferent control of cochlea].
    Xu J; Liu C; Guo L; Lian N; Liu B
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear Nerve Aplasia with Detectable Olivocochlear Efferent Function: A Distinct Presentation of Auditory Neuropathy Spectrum Disorder.
    James AL; Dixon PR; Harrison RV
    Audiol Neurootol; 2018; 23(1):39-47. PubMed ID: 29936500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the Presence of Spontaneous Components Affect the Reliability of Contralateral Suppression of Evoked Otoacoustic Emissions?
    Jedrzejczak WW; Pilka E; Kochanek K; Skarzynski H
    Ear Hear; 2021; 42(4):990-1005. PubMed ID: 33480622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-frequency analysis of transient evoked-otoacoustic emissions in individuals with auditory neuropathy spectrum disorder.
    Narne VK; Prabhu PP; Chatni S
    Hear Res; 2014 Jul; 313():1-8. PubMed ID: 24768764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions and hearing threshold fine structure.
    Dewey JB; Lee J; Dhar S
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):897-914. PubMed ID: 25245498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Zhao W; Dhar S
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):53-67. PubMed ID: 19798532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on the basic properties of spontaneous otoacoustic emissions].
    Liu B; Liu C; Guo L; Zhao X
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2004 Oct; 18(10):590-2. PubMed ID: 15620134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emissions and effects of contralateral white noise stimulation on transient evoked otoacoustic emissions in diabetic children.
    Ugur AK; Kemaloglu YK; Ugur MB; Gunduz B; Saridogan C; Yesilkaya E; Bideci A; Cinaz P; Goksu N
    Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):555-9. PubMed ID: 19150138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairments of the medial olivocochlear system increase the risk of noise-induced auditory neuropathy in laboratory mice.
    May BJ; Lauer AM; Roos MJ
    Otol Neurotol; 2011 Dec; 32(9):1568-78. PubMed ID: 21956602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear.
    Kugler K; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):713-25. PubMed ID: 26264256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation].
    Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y
    Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and slow effects of medial olivocochlear efferent activity in humans.
    Zhao W; Dhar S
    PLoS One; 2011 Apr; 6(4):e18725. PubMed ID: 21494578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear.
    Mott JB; Norton SJ; Neely ST; Warr WB
    Hear Res; 1989 Apr; 38(3):229-42. PubMed ID: 2708165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral suppression of otoacoustic emissions in pre-school children.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2020 May; 132():109915. PubMed ID: 32028191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.