BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 34309594)

  • 1. Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.
    Guinn MT; Coraci D; Guinn L; Balázsi G
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-reducing optogenetic negative-feedback gene circuits in human cells.
    Guinn MT; Balázsi G
    Nucleic Acids Res; 2019 Aug; 47(14):7703-7714. PubMed ID: 31269201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures.
    Minami SA; Garimella SS; Shah PS
    Biotechnol J; 2024 Jan; 19(1):e2300071. PubMed ID: 37877211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.
    Zhao EM; Lalwani MA; Lovelett RJ; García-Echauri SA; Hoffman SM; Gonzalez CL; Toettcher JE; Kevrekidis IG; Avalos JL
    ACS Synth Biol; 2020 Dec; 9(12):3254-3266. PubMed ID: 33232598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mini Photobioreactors for in Vivo Real-Time Characterization and Evolutionary Tuning of Bacterial Optogenetic Circuit.
    Wang H; Yang YT
    ACS Synth Biol; 2017 Sep; 6(9):1793-1796. PubMed ID: 28532145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating optogenetic and pharmacological approaches to study neural circuit function: current applications and future directions.
    Stuber GD; Mason AO
    Pharmacol Rev; 2013 Jan; 65(1):156-70. PubMed ID: 23319548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic tools for microbial synthetic biology.
    Chia N; Lee SY; Tong Y
    Biotechnol Adv; 2022 Oct; 59():107953. PubMed ID: 35398205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
    Baaske J; Gonschorek P; Engesser R; Dominguez-Monedero A; Raute K; Fischbach P; Müller K; Cachat E; Schamel WWA; Minguet S; Davies JA; Timmer J; Weber W; Zurbriggen MD
    Sci Rep; 2018 Oct; 8(1):15024. PubMed ID: 30301909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.
    Oh TJ; Fan H; Skeeters SS; Zhang K
    Adv Biol (Weinh); 2021 May; 5(5):e2000180. PubMed ID: 34028216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applicability of optogenetic gene regulation.
    Wichert N; Witt M; Blume C; Scheper T
    Biotechnol Bioeng; 2021 Nov; 118(11):4168-4185. PubMed ID: 34287844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.
    Dionisi S; Piera K; Baumschlager A; Khammash M
    ACS Synth Biol; 2022 Aug; 11(8):2650-2661. PubMed ID: 35921263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
    Hernández-Candia CN; Wysoczynski CL; Tucker CL
    Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green Light-Controlled Gene Switch for Mammalian and Plant Cells.
    Schneider N; Chatelle CV; Ochoa-Fernandez R; Zurbriggen MD; Weber W
    Methods Mol Biol; 2021; 2312():89-107. PubMed ID: 34228286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Engineering Platform for Clinical Application of Optogenetic Therapy in Retinal Degenerative Diseases.
    Yan B; Nirenberg S
    IEEE J Transl Eng Health Med; 2023; 11():296-305. PubMed ID: 37250684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch.
    Fischbach P; Gonschorek P; Baaske J; Davies JA; Weber W; Zurbriggen MD
    Methods Mol Biol; 2020; 2173():159-170. PubMed ID: 32651917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.