These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34310047)

  • 1. Low-Temperature Methanol-Water Reforming Over Alcohol Dehydrogenase and Immobilized Ruthenium Complex.
    Shen Y; Wang L; Xu Z; Ning F; Zhan Y; Bai C; Zhou X
    ChemSusChem; 2021 Sep; 14(18):3867-3875. PubMed ID: 34310047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinduced Room-Temperature Methanol Reforming.
    Heim LE; Thiel D; Gedig C; Deska J; Prechtl MH
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10308-12. PubMed ID: 26179443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature.
    Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X
    ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen generation from methanol at near-room temperature.
    Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X
    Chem Sci; 2017 Nov; 8(11):7498-7504. PubMed ID: 29163903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures.
    Rodríguez-Lugo RE; Trincado M; Vogt M; Tewes F; Santiso-Quinones G; Grützmacher H
    Nat Chem; 2013 Apr; 5(4):342-7. PubMed ID: 23511424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a Nonorganometallic Ruthenium(II) Polypyridylamine Complex Catalyze Hydride Transfer? Mechanistic Insight from Solution Kinetics on the Reduction of Coenzyme NAD
    Chrzanowska M; Katafias A; van Eldik R
    Inorg Chem; 2020 Oct; 59(20):14944-14953. PubMed ID: 33001639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions.
    Watson G; Gohari Derakhshandeh P; Abednatanzi S; Schmidt J; Leus K; Van Der Voort P
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33562691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics behavior of the reduction of formaldehyde catalyzed by Alcohol Dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH.
    Wen N; Liu W; Hou Y; Zhao Z
    Appl Biochem Biotechnol; 2013 May; 170(2):370-80. PubMed ID: 23529657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic.
    van der Waals D; Heim LE; Vallazza S; Gedig C; Deska J; Prechtl MH
    Chemistry; 2016 Aug; 22(33):11568-73. PubMed ID: 27380865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde.
    Boucher MB; Marcinkowski MD; Liriano ML; Murphy CJ; Lewis EA; Jewell AD; Mattera MF; Kyriakou G; Flytzani-Stephanopoulos M; Sykes EC
    ACS Nano; 2013 Jul; 7(7):6181-7. PubMed ID: 23746268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature stable CO
    Liu Z; Yin Z; Cox C; Bosman M; Qian X; Li N; Zhao H; Du Y; Li J; Nocera DG
    Sci Adv; 2016 Sep; 2(9):e1501425. PubMed ID: 28508036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction.
    Liu J; Cazelles R; Chen ZP; Zhou H; Galarneau A; Antonietti M
    Phys Chem Chem Phys; 2014 Jul; 16(28):14699-705. PubMed ID: 24915954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic recycling of NAD(P)H.
    Fukuzumi S; Lee YM; Nam W
    J Inorg Biochem; 2019 Oct; 199():110777. PubMed ID: 31376683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol.
    Luo J; Meyer AS; Mateiu RV; Pinelo M
    N Biotechnol; 2015 May; 32(3):319-27. PubMed ID: 25698375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.
    Yuki M; Sakata K; Hirao Y; Nonoyama N; Nakajima K; Nishibayashi Y
    J Am Chem Soc; 2015 Apr; 137(12):4173-82. PubMed ID: 25756856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.
    Marpani F; Sárossy Z; Pinelo M; Meyer AS
    Biotechnol Bioeng; 2017 Dec; 114(12):2762-2770. PubMed ID: 28832942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ru
    Patel J; Majee K; Ahmạd E; Tanaka K; Padhi SK
    Dalton Trans; 2015 Jan; 44(3):920-3. PubMed ID: 25479040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid residues in the nicotinamide binding site contribute to catalysis by horse liver alcohol dehydrogenase.
    Rubach JK; Plapp BV
    Biochemistry; 2003 Mar; 42(10):2907-15. PubMed ID: 12627956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.