These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34310133)

  • 1. Physics-Inspired Structural Representations for Molecules and Materials.
    Musil F; Grisafi A; Bartók AP; Ortner C; Csányi G; Ceriotti M
    Chem Rev; 2021 Aug; 121(16):9759-9815. PubMed ID: 34310133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal radial basis for density-based atomic representations.
    Goscinski A; Musil F; Pozdnyakov S; Nigam J; Ceriotti M
    J Chem Phys; 2021 Sep; 155(10):104106. PubMed ID: 34525832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties.
    Nigam J; Willatt MJ; Ceriotti M
    J Chem Phys; 2022 Jan; 156(1):014115. PubMed ID: 34998321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian representation for image recognition and reinforcement learning of atomistic structure.
    Christiansen MV; Mortensen HL; Meldgaard SA; Hammer B
    J Chem Phys; 2020 Jul; 153(4):044107. PubMed ID: 32752658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning at the Atomic Scale.
    Musil F; Ceriotti M
    Chimia (Aarau); 2019 Dec; 73(12):972-982. PubMed ID: 31883547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for condensed matter physics.
    Bedolla E; Padierna LC; Castañeda-Priego R
    J Phys Condens Matter; 2020 Nov; 33(5):. PubMed ID: 32932243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.
    Schütt KT; Gastegger M; Tkatchenko A; Müller KR; Maurer RJ
    Nat Commun; 2019 Nov; 10(1):5024. PubMed ID: 31729373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements.
    Willatt MJ; Musil F; Ceriotti M
    Phys Chem Chem Phys; 2018 Dec; 20(47):29661-29668. PubMed ID: 30465679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale approach for the prediction of atomic scale properties.
    Grisafi A; Nigam J; Ceriotti M
    Chem Sci; 2020 Dec; 12(6):2078-2090. PubMed ID: 34163971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping Materials and Molecules.
    Cheng B; Griffiths RR; Wengert S; Kunkel C; Stenczel T; Zhu B; Deringer VL; Bernstein N; Margraf JT; Reuter K; Csanyi G
    Acc Chem Res; 2020 Sep; 53(9):1981-1991. PubMed ID: 32794697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction to machine and deep learning for medical physicists.
    Cui S; Tseng HH; Pakela J; Ten Haken RK; El Naqa I
    Med Phys; 2020 Jun; 47(5):e127-e147. PubMed ID: 32418339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified theory of atom-centered representations and message-passing machine-learning schemes.
    Nigam J; Pozdnyakov S; Fraux G; Ceriotti M
    J Chem Phys; 2022 May; 156(20):204115. PubMed ID: 35649823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes.
    Eismann S; Townshend RJL; Thomas N; Jagota M; Jing B; Dror RO
    Proteins; 2021 May; 89(5):493-501. PubMed ID: 33289162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Process Regression for Materials and Molecules.
    Deringer VL; Bartók AP; Bernstein N; Wilkins DM; Ceriotti M; Csányi G
    Chem Rev; 2021 Aug; 121(16):10073-10141. PubMed ID: 34398616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of Kier-Hall topological indices in the QSAR of anticancer drug design.
    Nandi S; Bagchi MC
    Curr Comput Aided Drug Des; 2012 Jun; 8(2):159-70. PubMed ID: 22497470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the International Workshop on Current Challenges in Liquid and Glass Science, (The Cosener's House, Abingdon 10-12 January 2007).
    Hannon AC; Salmon PS; Soper AK
    J Phys Condens Matter; 2007 Oct; 19(41):410301. PubMed ID: 28192312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.