BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34310294)

  • 1. Multi-Band Brain Network Analysis for Functional Neuroimaging Biomarker Identification.
    Hu R; Peng Z; Zhu X; Gan J; Zhu Y; Ma J; Wu G
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3843-3855. PubMed ID: 34310294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain functional connectivity analysis based on multi-graph fusion.
    Gan J; Peng Z; Zhu X; Hu R; Ma J; Wu G
    Med Image Anal; 2021 Jul; 71():102057. PubMed ID: 33957559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of early Alzheimer's disease based on dynamic high order networks.
    Lei B; Yu S; Zhao X; Frangi AF; Tan EL; Elazab A; Wang T; Wang S
    Brain Imaging Behav; 2021 Feb; 15(1):276-287. PubMed ID: 32789620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
    Zhang C; Ma Y; Qiao L; Zhang L; Liu M
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparsity-guided multiple functional connectivity patterns for classification of schizophrenia via convolutional network.
    Yu R; Pan C; Bian L; Fei X; Chen M; Shen D
    Hum Brain Mapp; 2023 Aug; 44(12):4523-4534. PubMed ID: 37318814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease.
    Pusil S; Dimitriadis SI; López ME; Pereda E; Maestú F
    Neuroimage Clin; 2019; 24():101972. PubMed ID: 31522127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis.
    Wang M; Shao W; Hao X; Huang S; Zhang D
    Bioinformatics; 2022 Apr; 38(8):2323-2332. PubMed ID: 35143604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating sparse functional connectivity networks via hyperparameter-free learning model.
    Sun L; Xue Y; Zhang Y; Qiao L; Zhang L; Liu M
    Artif Intell Med; 2021 Jan; 111():102004. PubMed ID: 33461688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Functional Connectivity Networks via Low-Rank Tensor Approximation With Applications to MCI Identification.
    Jiang X; Zhang L; Qiao L; Shen D
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1912-1920. PubMed ID: 31675312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse Deep Neural Network for Encoding and Decoding the Structural Connectome.
    Singh SP; Gupta S; Rajapakse JC
    IEEE J Transl Eng Health Med; 2024; 12():371-381. PubMed ID: 38633564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity.
    Liu M; Zhang H; Shi F; Shen D
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37339027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Structural and Functional Connectome Mismatch for Classification and Individualized Therapy in Alzheimer Disease.
    Ren H; Zhu J; Su X; Chen S; Zeng S; Lan X; Zou LY; Sughrue ME; Guo Y
    Front Public Health; 2020; 8():584430. PubMed ID: 33330326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Brain's Structural Connectome Mediates the Relationship between Regional Neuroimaging Biomarkers in Alzheimer's Disease.
    Pandya S; Kuceyeski A; Raj A;
    J Alzheimers Dis; 2017; 55(4):1639-1657. PubMed ID: 27911289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.
    Sheng J; Wang B; Zhang Q; Liu Q; Ma Y; Liu W; Shao M; Chen B
    Behav Brain Res; 2019 Jun; 365():210-221. PubMed ID: 30836158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disrupted structural and functional brain networks in Alzheimer's disease.
    Dai Z; Lin Q; Li T; Wang X; Yuan H; Yu X; He Y; Wang H
    Neurobiol Aging; 2019 Mar; 75():71-82. PubMed ID: 30553155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-band network fusion for Alzheimer's disease identification with functional MRI.
    Guo L; Zhang Y; Liu Q; Guo K; Wang Z
    Front Psychiatry; 2022; 13():1070198. PubMed ID: 36590604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Scale Dynamic Graph Learning for Brain Disorder Detection With Functional MRI.
    Ma Y; Wang Q; Cao L; Li L; Zhang C; Qiao L; Liu M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3501-3512. PubMed ID: 37643109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroinflammation and Functional Connectivity in Alzheimer's Disease: Interactive Influences on Cognitive Performance.
    Passamonti L; Tsvetanov KA; Jones PS; Bevan-Jones WR; Arnold R; Borchert RJ; Mak E; Su L; O'Brien JT; Rowe JB
    J Neurosci; 2019 Sep; 39(36):7218-7226. PubMed ID: 31320450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set.
    Park JE; Park B; Kim SJ; Kim HS; Choi CG; Jung SC; Oh JY; Lee JH; Roh JH; Shim WH;
    Korean J Radiol; 2017; 18(6):983-991. PubMed ID: 29089831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual Connectomic Datasets in Alzheimer's Disease and Aging Using Whole-Brain Network Dynamics Modelling.
    Arbabyazd L; Shen K; Wang Z; Hofmann-Apitius M; Ritter P; McIntosh AR; Battaglia D; Jirsa V
    eNeuro; 2021; 8(4):. PubMed ID: 34045210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.