These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34310770)

  • 1. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study.
    Yeh CG; Pierides C; Jameson GNL; de Visser SP
    Chemistry; 2021 Oct; 27(55):13793-13806. PubMed ID: 34310770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis.
    Crowell JK; Sardar S; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2016 Aug; 604():86-94. PubMed ID: 27311613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and computational studies of reversible O
    Fischer AA; Lindeman SV; Fiedler AT
    Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs.
    Driggers CM; Hartman SJ; Karplus PA
    Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism.
    Pierce BS; Schmittou AN; York NJ; Madigan RP; Nino PF; Foss FW; Lockart MM
    J Biol Chem; 2024 Apr; 300(4):105777. PubMed ID: 38395308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site.
    York NJ; Lockart MM; Schmittou AN; Pierce BS
    J Biol Inorg Chem; 2023 Apr; 28(3):285-299. PubMed ID: 36809458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic Investigation of Cysteamine Dioxygenase.
    Fernandez RL; Dillon SL; Stipanuk MH; Fox BG; Brunold TC
    Biochemistry; 2020 Jul; 59(26):2450-2458. PubMed ID: 32510930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and Computational Comparisons of Thiolate-Ligated Ferric Nonheme Complexes to Cysteine Dioxygenase: Second-Sphere Effects on Substrate (Analogue) Positioning.
    Fischer AA; Miller JR; Jodts RJ; Ekanayake DM; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2019 Dec; 58(24):16487-16499. PubMed ID: 31789510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4.
    Brandt U; Galant G; Meinert-Berning C; Steinbüchel A
    Enzyme Microb Technol; 2019 Jan; 120():61-68. PubMed ID: 30396400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase.
    Miller JR; Brunold TC
    Methods Enzymol; 2023; 682():101-135. PubMed ID: 36948699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F
    Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y
    Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate Specificity in Thiol Dioxygenases.
    Aloi S; Davies CG; Karplus PA; Wilbanks SM; Jameson GNL
    Biochemistry; 2019 May; 58(19):2398-2407. PubMed ID: 31045343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and computational characterization of substrate-bound mouse cysteine dioxygenase: nature of the ferrous and ferric cysteine adducts and mechanistic implications.
    Gardner JD; Pierce BS; Fox BG; Brunold TC
    Biochemistry; 2010 Jul; 49(29):6033-41. PubMed ID: 20397631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O
    Morrow WP; Sardar S; Thapa P; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2017 Oct; 631():66-74. PubMed ID: 28826737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase.
    Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR
    Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.