BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34310855)

  • 1. Enhanced production of neoagarobiose from agar with Corynebacterium glutamicum producing exo-type and endo-type β-agarases.
    Jeon EJ; Choi JW; Cho MS; Jeong KJ
    Microb Biotechnol; 2021 Sep; 14(5):2164-2175. PubMed ID: 34310855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy.
    Yan J; Chen P; Zeng Y; Yang J; Men Y; Zhu Y; Sun Y
    Int J Biol Macromol; 2020 Oct; 160():288-295. PubMed ID: 32470583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04.
    Han W; Cheng Y; Wang D; Wang S; Liu H; Gu J; Wu Z; Li F
    Appl Environ Microbiol; 2016 Aug; 82(16):4944-54. PubMed ID: 27260364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar.
    Alkotaini B; Han NS; Kim BS
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1573-1580. PubMed ID: 27888333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose.
    Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum.
    Kuge T; Watanabe A; Hasegawa S; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5019-5032. PubMed ID: 28409383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum.
    Yim SS; Choi JW; Lee RJ; Lee YJ; Lee SH; Kim SY; Jeong KJ
    Biotechnol Bioeng; 2016 Jan; 113(1):163-72. PubMed ID: 26134574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion.
    Kikuchi Y; Itaya H; Date M; Matsui K; Wu LF
    Appl Environ Microbiol; 2009 Feb; 75(3):603-7. PubMed ID: 19074606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein secretion in Corynebacterium glutamicum.
    Liu X; Zhang W; Zhao Z; Dai X; Yang Y; Bai Z
    Crit Rev Biotechnol; 2017 Jun; 37(4):541-551. PubMed ID: 27737570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type beta-agarase producing neoagarobiose.
    Kim HT; Lee S; Lee D; Kim HS; Bang WG; Kim KH; Choi IG
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):227-34. PubMed ID: 19802606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in
    Jia H; Li H; Zhang L; Xu D
    Iran J Biotechnol; 2018 Apr; 16(1):e1746. PubMed ID: 30555839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869.
    Kikuchi Y; Date M; Itaya H; Matsui K; Wu LF
    Appl Environ Microbiol; 2006 Nov; 72(11):7183-92. PubMed ID: 16997984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-agarases I and II from Pseudomonas atlantica. Substrate specificities.
    Morrice LM; McLean MW; Long WF; Williamson FB
    Eur J Biochem; 1983 Dec; 137(1-2):149-54. PubMed ID: 6653550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum.
    Zhang L; Jia H; Xu D
    Plasmid; 2015 Nov; 82():50-5. PubMed ID: 26499464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide.
    An SJ; Yim SS; Jeong KJ
    Protein Expr Purif; 2013 Jun; 89(2):251-7. PubMed ID: 23597779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Secretory production of xylanase in Corynebacterium glutamicum using its endogenous elements].
    Zhang W; Liu X; Yang Y; Bai Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):425-434. PubMed ID: 30912351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agar degradation by microorganisms and agar-degrading enzymes.
    Chi WJ; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2012 May; 94(4):917-30. PubMed ID: 22526785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-L-galactosidase specific for neoagarobiose hydrolysis into monosaccharides.
    Jang WY; Kwon MJ; Kim KY; Kim YH
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4621-4634. PubMed ID: 34057561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.