BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34311088)

  • 1. Luminescence turn-on response of naphthalene diimide based chemosensor with Formaldehyde: A novel stratagem for estimation of formaldehyde in storage fish samples.
    Saha S; Sahoo P
    Bioorg Med Chem Lett; 2021 Oct; 49():128287. PubMed ID: 34311088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction.
    Xu J; Zhang Y; Zeng L; Liu J; Kinsella JM; Sheng R
    Talanta; 2016 Nov; 160():645-652. PubMed ID: 27591661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers.
    Li P; Zhang D; Zhang Y; Lu W; Wang W; Chen T
    ACS Sens; 2018 Nov; 3(11):2394-2401. PubMed ID: 30346151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a turn-on fluorescent probe for detecting formaldehyde in biological systems and real food samples.
    Wang L; Ma Y; Lin W
    Food Chem; 2024 Aug; 450():139315. PubMed ID: 38615534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive and rapid responsive fluorescence probe for determination of formaldehyde in seafood and in vivo imaging application.
    Jiang L; Hu Q; Chen T; Min D; Yuan HQ; Bao GM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117789. PubMed ID: 31780312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells.
    Chen S; Jia Y; Zou GY; Yu YL; Wang JH
    Nanoscale; 2019 Mar; 11(13):6377-6383. PubMed ID: 30888365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A naphthalimide-aminal-based pH-sensitive fluorescent donor for lysosome-targeted formaldehyde release and fluorescence turn-on readout.
    Xu H; Ma S; Liu Q; Huang L; Wu P; Liu X; Huang Y; Wang X; Xu H; Lou K; Wang W
    Chem Commun (Camb); 2019 Jun; 55(49):7053-7056. PubMed ID: 31143885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive chemosensor for Hg2+ based on the naphthalimide fluorophore.
    Yang R; Guo X; Wang W; Zhang Y; Jia L
    J Fluoresc; 2012 Jul; 22(4):1065-71. PubMed ID: 22450727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution.
    Li CY; Xu F; Li YF; Zhou K; Zhou Y
    Anal Chim Acta; 2012 Mar; 717():122-6. PubMed ID: 22304823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of formaldehyde in single cell by capillary electrophoresis with LIF detection.
    Fu YJ; Chen L; Guo XF; Wang H
    Electrophoresis; 2019 Apr; 40(7):1027-1033. PubMed ID: 30653681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent pH chemosensor based on functionalized naphthalimide in aqueous solution.
    Li CY; Zhou Y; Xu F; Li YF; Zou CX; Weng C
    Anal Sci; 2012; 28(8):743-7. PubMed ID: 22878627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.
    Wongniramaikul W; Limsakul W; Choodum A
    Food Chem; 2018 May; 249():154-161. PubMed ID: 29407918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorescence ratiometric chemosensor for Fe³⁺ based on TBET and its application in living cells.
    Wang C; Zhang D; Huang X; Ding P; Wang Z; Zhao Y; Ye Y
    Talanta; 2014 Oct; 128():69-74. PubMed ID: 25059132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Aggregation-Induced Emission-Based "Turn-On" Fluorescent Probe for Facile Detection of Gaseous Formaldehyde.
    Zhao X; Ji C; Ma L; Wu Z; Cheng W; Yin M
    ACS Sens; 2018 Oct; 3(10):2112-2117. PubMed ID: 30256619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Hexylaminoethylamidonaphthalimide as Cu2+ sensor.
    Sheshashena Reddy T; Ram Reddy A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():880-6. PubMed ID: 24709354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions.
    Chen Z; Wang L; Zou G; Tang J; Cai X; Teng M; Chen L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():57-61. PubMed ID: 23291230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-Based Genetically Encoded Fluorescent and Luminescent Probes for Detecting Formaldehyde in Living Cells.
    Zhang Y; Du Y; Li M; Zhang D; Xiang Z; Peng T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16352-16356. PubMed ID: 32537908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ICT based water-soluble fluorescent probe for discriminating mono and dicarbonyl species and analysis in foods.
    Jana A; Baruah M; Munan S; Samanta A
    Chem Commun (Camb); 2021 Jun; 57(52):6380-6383. PubMed ID: 34081065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple pyrene-based fluorescent probe for highly selective detection of formaldehyde and its application in live-cell imaging.
    Zhang D; Liu D; Li M; Yang Y; Wang Y; Yin H; Liu J; Jia B; Wu X
    Anal Chim Acta; 2018 Nov; 1033():180-184. PubMed ID: 30172324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intramolecular charge transfer and excited state intramolecular proton transfer based fluorescent probe for highly selective detection and imaging of formaldehyde in living cells.
    Chen W; Yang M; Luo N; Wang F; Yu RQ; Jiang JH
    Analyst; 2019 Nov; 144(23):6922-6927. PubMed ID: 31660553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.