These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 34311160)
1. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy. Fracchiolla F; Engwall E; Janson M; Tamm F; Lorentini S; Fellin F; Bertolini M; Algranati C; Righetto R; Farace P; Amichetti M; Schwarz M Phys Med; 2021 Aug; 88():226-234. PubMed ID: 34311160 [TBL] [Abstract][Full Text] [Related]
2. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung. Magro G; Mein S; Kopp B; Mastella E; Pella A; Ciocca M; Mairani A Phys Med; 2021 Jun; 86():66-74. PubMed ID: 34058719 [TBL] [Abstract][Full Text] [Related]
3. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403 [TBL] [Abstract][Full Text] [Related]
4. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Schiavi A; Senzacqua M; Pioli S; Mairani A; Magro G; Molinelli S; Ciocca M; Battistoni G; Patera V Phys Med Biol; 2017 Sep; 62(18):7482-7504. PubMed ID: 28873069 [TBL] [Abstract][Full Text] [Related]
5. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study. Giantsoudi D; Schuemann J; Jia X; Dowdell S; Jiang S; Paganetti H Phys Med Biol; 2015 Mar; 60(6):2257-69. PubMed ID: 25715661 [TBL] [Abstract][Full Text] [Related]
6. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions. Wan Chan Tseung H; Ma J; Beltran C Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050 [TBL] [Abstract][Full Text] [Related]
7. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy. Feng H; Holmes JM; Vora SA; Stoker JB; Bues M; Wong WW; Sio TS; Foote RL; Patel SH; Shen J; Liu W Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 37944480 [No Abstract] [Full Text] [Related]
8. Technical note: Evaluation and second check of a commercial Monte Carlo dose engine for small-field apertures in pencil beam scanning proton therapy. Holmes J; Shen J; Shan J; Patrick CL; Wong WW; Foote RL; Patel SH; Bues M; Liu W Med Phys; 2022 May; 49(5):3497-3506. PubMed ID: 35305269 [TBL] [Abstract][Full Text] [Related]
9. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy. Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039 [TBL] [Abstract][Full Text] [Related]
10. Radiobiological and dosimetric impact of RayStation pencil beam and Monte Carlo algorithms on intensity-modulated proton therapy breast cancer plans. Rana S; Greco K; Samuel EJJ; Bennouna J J Appl Clin Med Phys; 2019 Aug; 20(8):36-46. PubMed ID: 31343826 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy. Lysakovski P; Kopp B; Tessonnier T; Mein S; Ferrari A; Haberer T; Debus J; Mairani A Med Phys; 2024 Feb; 51(2):1433-1449. PubMed ID: 37748042 [TBL] [Abstract][Full Text] [Related]
12. A Monte-Carlo-based and GPU-accelerated 4D-dose calculator for a pencil beam scanning proton therapy system. Pepin MD; Tryggestad E; Wan Chan Tseung HS; Johnson JE; Herman MG; Beltran C Med Phys; 2018 Nov; 45(11):5293-5304. PubMed ID: 30203550 [TBL] [Abstract][Full Text] [Related]
13. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC). Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012 [TBL] [Abstract][Full Text] [Related]
14. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields. Brost EE; Wan Chan Tseung H; Antolak JA Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907 [TBL] [Abstract][Full Text] [Related]
15. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system. Ma J; Beltran C; Seum Wan Chan Tseung H; Herman MG Med Phys; 2014 Dec; 41(12):121707. PubMed ID: 25471954 [TBL] [Abstract][Full Text] [Related]
16. Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy. Pastor-Serrano O; Perkó Z Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447605 [No Abstract] [Full Text] [Related]
17. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm. Widesott L; Lorentini S; Fracchiolla F; Farace P; Schwarz M Phys Med Biol; 2018 Jul; 63(14):145016. PubMed ID: 29726402 [TBL] [Abstract][Full Text] [Related]
18. Impact of TPS calculation algorithms on dose delivered to the patient in proton therapy treatments. Molinelli S; Russo S; Magro G; Maestri D; Mairani A; Mastella E; Mirandola A; Vai A; Vischioni B; Valvo F; Ciocca M Phys Med Biol; 2019 Apr; 64(7):075016. PubMed ID: 30802887 [TBL] [Abstract][Full Text] [Related]
19. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine. Kugel F; Wulff J; Bäumer C; Janson M; Kretschmer J; Brodbek L; Behrends C; Verbeek N; Looe HK; Poppe B; Timmermann B Z Med Phys; 2023 Nov; 33(4):529-541. PubMed ID: 36577626 [TBL] [Abstract][Full Text] [Related]
20. Validation and application of a fast Monte Carlo algorithm for assessing the clinical impact of approximations in analytical dose calculations for pencil beam scanning proton therapy. Huang S; Souris K; Li S; Kang M; Barragan Montero AM; Janssens G; Lin A; Garver E; Ainsley C; Taylor P; Xiao Y; Lin L Med Phys; 2018 Dec; 45(12):5631-5642. PubMed ID: 30295950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]