These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3431125)

  • 1. Kinetics of substrate reaction during irreversible modification of enzyme activity for enzymes involving two substrates.
    Wang ZX; Tsou CL
    J Theor Biol; 1987 Aug; 127(3):253-70. PubMed ID: 3431125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor.
    Liu W; Tsou CL
    Biochim Biophys Acta; 1986 Mar; 870(2):185-90. PubMed ID: 3955054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier.
    Tian WX; Tsou CL
    Biochemistry; 1982 Mar; 21(5):1028-32. PubMed ID: 7074045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative method for determining inhibition rate constants by following the substrate reaction.
    Wang ZX; Tsou CL
    J Theor Biol; 1990 Feb; 142(4):531-49. PubMed ID: 2338837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.
    Moruno-Dávila MA; Garrido-del Solo C; García-Moreno M; Havsteen BH; Garcia-Sevilla F; Garcia-Cánovas F; Varón R
    Int J Biochem Cell Biol; 2001 Feb; 33(2):181-91. PubMed ID: 11240375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of modification reactions at comparable enzyme and modifier concentrations.
    Zhao KY; Wang ZX
    J Theor Biol; 1996 Aug; 181(4):319-27. PubMed ID: 8949580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two theoretical problems concerning the irreversible modification kinetics of enzyme activity.
    Wang ZX
    J Theor Biol; 1990 Feb; 142(4):551-63. PubMed ID: 2338838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of inactivation of bovine pancreatic ribonuclease A by bromopyruvic acid.
    Wang MH; Wang ZX; Zhao KY
    Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):187-92. PubMed ID: 8947485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of reactivation during refolding of guanidine-denatured pancreatic ribonuclease A.
    Liu W; Tsou CL
    Biochim Biophys Acta; 1987 Dec; 916(3):465-73. PubMed ID: 2825794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of slow reversible inhibition of human muscle creatine kinase by planar anions.
    Luo W; Xie WZ; Bai JH; Zhou HM
    J Biochem; 1998 Oct; 124(4):702-6. PubMed ID: 9756613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the course of inactivation of yeast alcohol dehydrogenase by 4-(2-pyridylazo)-resorcinol.
    Zhang YX; Zhou HM
    J Enzyme Inhib; 1996; 10(4):239-250. PubMed ID: 8872744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity and detailed characterization of a bifunctional amylase-pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide.
    Kim CH; Kim YS
    Eur J Biochem; 1995 Feb; 227(3):687-93. PubMed ID: 7532585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of inactivation of aminoacylase by 2-chloromercuri-4-nitrophenol: a new type of complexing inhibitor.
    Wang ZX; Wang HR; Zhou HM
    Biochemistry; 1995 May; 34(20):6863-8. PubMed ID: 7756317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid determination of kinetic constants by competitive spectrophotometry.
    Hwang SY; Brown KS; Gilvarg C
    Anal Biochem; 1988 Apr; 170(1):161-7. PubMed ID: 3389508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of thermal inactivation of lactate dehydrogenase from rabbit muscle.
    Bai JH; Wang HJ; Liu DS; Zhou HM
    J Protein Chem; 1997 Nov; 16(8):801-7. PubMed ID: 9365928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of suicide substrates.
    Wang ZX
    J Theor Biol; 1990 Dec; 147(4):497-508. PubMed ID: 2074726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive inhibition of lipolytic enzymes. IV. Structural details of acylamino phospholipid analogues important for the potent inhibitory effects on pancreatic phospholipase A2.
    de Haas GH; Dijkman R; Ransac S; Verger R
    Biochim Biophys Acta; 1990 Oct; 1046(3):249-57. PubMed ID: 2171669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates.
    Rendina AR; Cheng D
    Biochem J; 2005 Jun; 388(Pt 3):895-903. PubMed ID: 15715522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of the general modifier mechanism of Botts and Morales involving a suicide substrate.
    Varón R; García-Cánovas F; García-Moreno M; Valero E; Molina-Alarcón M; García-Meseguers MJ; Vidal de Labra JA; Garrido-del Sol C
    J Theor Biol; 2002 Oct; 218(3):355-74. PubMed ID: 12381436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.