BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34311382)

  • 1. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition.
    Messel MS; Raud L; Hoff PK; Stubberud J; Huster RJ
    Neuroimage; 2021 Nov; 241():118400. PubMed ID: 34311382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-trial theta band activity in the ventromedial prefrontal cortex correlates with inhibition-related theta band activity in the right inferior frontal cortex.
    Adelhöfer N; Beste C
    Neuroimage; 2020 Oct; 219():117052. PubMed ID: 32540357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontal midline theta differentiates separate cognitive control strategies while still generalizing the need for cognitive control.
    Eisma J; Rawls E; Long S; Mach R; Lamm C
    Sci Rep; 2021 Jul; 11(1):14641. PubMed ID: 34282209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task.
    Töllner T; Wang Y; Makeig S; Müller HJ; Jung TP; Gramann K
    J Neurosci; 2017 Mar; 37(9):2504-2515. PubMed ID: 28137968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha and theta band activity share information relevant to proactive and reactive control during conflict-modulated response inhibition.
    Pscherer C; Wendiggensen P; Mückschel M; Bluschke A; Beste C
    Hum Brain Mapp; 2023 Dec; 44(17):5936-5952. PubMed ID: 37728249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conflict- and error-related theta activities are coupled to BOLD signals in different brain regions.
    Beldzik E; Ullsperger M; Domagalik A; Marek T
    Neuroimage; 2022 Aug; 256():119264. PubMed ID: 35508215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance.
    Eschmann KCJ; Bader R; Mecklinger A
    Neuroimage; 2020 Nov; 222():117219. PubMed ID: 32750499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task.
    Hong X; Sun J; Wang J; Li C; Tong S
    Int J Psychophysiol; 2020 Feb; 148():1-12. PubMed ID: 31857191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia.
    Ryman SG; Cavanagh JF; Wertz CJ; Shaff NA; Dodd AB; Stevens B; Ling J; Yeo RA; Hanlon FM; Bustillo J; Stromberg SF; Lin DS; Abrams S; Mayer AR
    Biol Psychiatry; 2018 Nov; 84(9):675-683. PubMed ID: 29921417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographical differences of frontal-midline theta activity reflect functional differences in cognitive control abilities.
    Eschmann KCJ; Bader R; Mecklinger A
    Brain Cogn; 2018 Jun; 123():57-64. PubMed ID: 29524859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expectations and violations: delineating the neural network of proactive inhibitory control.
    Zandbelt BB; Bloemendaal M; Neggers SF; Kahn RS; Vink M
    Hum Brain Mapp; 2013 Sep; 34(9):2015-24. PubMed ID: 22359406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stop-signal task difficulty and the right inferior frontal gyrus.
    Hughes ME; Johnston PJ; Fulham WR; Budd TW; Michie PT
    Behav Brain Res; 2013 Nov; 256():205-13. PubMed ID: 23973765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theta power during encoding predicts subsequent-memory performance and default mode network deactivation.
    White TP; Jansen M; Doege K; Mullinger KJ; Park SB; Liddle EB; Gowland PA; Francis ST; Bowtell R; Liddle PF
    Hum Brain Mapp; 2013 Nov; 34(11):2929-43. PubMed ID: 22711646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence.
    Chikara RK; Lo WC; Ko LW
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (No) time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation.
    van Driel J; Swart JC; Egner T; Ridderinkhof KR; Cohen MX
    Cogn Affect Behav Neurosci; 2015 Dec; 15(4):787-807. PubMed ID: 26111755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.
    Kubota Y; Sato W; Toichi M; Murai T; Okada T; Hayashi A; Sengoku A
    Brain Res Cogn Brain Res; 2001 Apr; 11(2):281-7. PubMed ID: 11275489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response.
    Hu S; Ide JS; Zhang S; Li CR
    J Neurosci; 2016 Dec; 36(50):12688-12696. PubMed ID: 27974616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw.
    Weber E; Doppelmayr M
    Int J Psychophysiol; 2016 Dec; 110():137-145. PubMed ID: 27825901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontoparietal theta oscillations during proactive control are associated with goal-updating and reduced behavioral variability.
    Cooper PS; Wong ASW; McKewen M; Michie PT; Karayanidis F
    Biol Psychol; 2017 Oct; 129():253-264. PubMed ID: 28923361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.