These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Neuron Contact Detection Based on Pipette Precise Positioning for Robotic Brain-Slice Patch Clamps. Li K; Gong H; Qiu J; Li R; Zhao Q; Zhao X; Sun M Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836974 [TBL] [Abstract][Full Text] [Related]
3. Integration of autopatching with automated pipette and cell detection in vitro. Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based real-time detection of neurons in brain slices for in vitro physiology. Yip MC; Gonzalez MM; Valenta CR; Rowan MJM; Forest CR Sci Rep; 2021 Mar; 11(1):6065. PubMed ID: 33727679 [TBL] [Abstract][Full Text] [Related]
5. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts. Landry CR; Yip MC; Kolb I; Stoy WA; Gonzalez MM; Forest CR Bio Protoc; 2021 Jul; 11(14):e4085. PubMed ID: 34395724 [TBL] [Abstract][Full Text] [Related]
6. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application. Danker T; Braun F; Silbernagl N; Guenther E Assay Drug Dev Technol; 2016 Mar; 14(2):144-55. PubMed ID: 26991363 [TBL] [Abstract][Full Text] [Related]
7. Automatic deep learning-driven label-free image-guided patch clamp system. Koos K; Oláh G; Balassa T; Mihut N; Rózsa M; Ozsvár A; Tasnadi E; Barzó P; Faragó N; Puskás L; Molnár G; Molnár J; Tamás G; Horvath P Nat Commun; 2021 Feb; 12(1):936. PubMed ID: 33568670 [TBL] [Abstract][Full Text] [Related]
8. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex. Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898 [TBL] [Abstract][Full Text] [Related]
9. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology. Annecchino LA; Morris AR; Copeland CS; Agabi OE; Chadderton P; Schultz SR Neuron; 2017 Aug; 95(5):1048-1055.e3. PubMed ID: 28858615 [TBL] [Abstract][Full Text] [Related]
10. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo. Suk HJ; van Welie I; Kodandaramaiah SB; Allen B; Forest CR; Boyden ES Neuron; 2017 Aug; 95(5):1037-1047.e11. PubMed ID: 28858614 [TBL] [Abstract][Full Text] [Related]
11. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices. Wu Q; Chubykin AA J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955 [TBL] [Abstract][Full Text] [Related]
12. Culturing and electrophysiology of cells on NRCC patch-clamp chips. Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948 [TBL] [Abstract][Full Text] [Related]
13. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo. Stoy WA; Kolb I; Holst GL; Liew Y; Pala A; Yang B; Boyden ES; Stanley GB; Forest CR J Neurophysiol; 2017 Aug; 118(2):1141-1150. PubMed ID: 28592685 [TBL] [Abstract][Full Text] [Related]
14. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae. Bertl A; Bihler H; Kettner C; Slayman CL Pflugers Arch; 1998 Nov; 436(6):999-1013. PubMed ID: 9799419 [TBL] [Abstract][Full Text] [Related]