These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34312223)

  • 1. Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions.
    Berlot E; Popp NJ; Grafton ST; Diedrichsen J
    J Neurosci; 2021 Sep; 41(36):7649-7661. PubMed ID: 34312223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Human Primary Motor Cortex in the Production of Skilled Finger Sequences.
    Yokoi A; Arbuckle SA; Diedrichsen J
    J Neurosci; 2018 Feb; 38(6):1430-1442. PubMed ID: 29305534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical re-evaluation of fMRI signatures of motor sequence learning.
    Berlot E; Popp NJ; Diedrichsen J
    Elife; 2020 May; 9():. PubMed ID: 32401193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The integrative role of the M1 in motor sequence learning.
    Hamano YH; Sugawara SK; Fukunaga M; Sadato N
    Neurosci Lett; 2021 Aug; 760():136081. PubMed ID: 34171404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation.
    Gabitov E; Manor D; Karni A
    J Cogn Neurosci; 2014 Dec; 26(12):2716-34. PubMed ID: 24893741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding During Sequence Learning Does Not Alter Cortical Representations of Individual Actions.
    Beukema P; Diedrichsen J; Verstynen TD
    J Neurosci; 2019 Aug; 39(35):6968-6977. PubMed ID: 31296537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
    Plow EB; Carey JR
    Brain Imaging Behav; 2012 Sep; 6(3):437-53. PubMed ID: 22454141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning from the other limb's experience: sharing the 'trained' M1 representation of the motor sequence knowledge.
    Gabitov E; Manor D; Karni A
    J Physiol; 2016 Jan; 594(1):169-88. PubMed ID: 26442464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor planning brings human primary somatosensory cortex into action-specific preparatory states.
    Ariani G; Pruszynski JA; Diedrichsen J
    Elife; 2022 Jan; 11():. PubMed ID: 35018886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct ipsilateral cortical representations for individuated finger movements.
    Diedrichsen J; Wiestler T; Krakauer JW
    Cereb Cortex; 2013 Jun; 23(6):1362-77. PubMed ID: 22610393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Human Motor System Supports Sequence-Specific Representations over Multiple Training-Dependent Timescales.
    Wymbs NF; Grafton ST
    Cereb Cortex; 2015 Nov; 25(11):4213-25. PubMed ID: 24969473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of representational geometry across a wide range of fMRI activity levels.
    Arbuckle SA; Yokoi A; Pruszynski JA; Diedrichsen J
    Neuroimage; 2019 Feb; 186():155-163. PubMed ID: 30395930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved fMRI of activation patterns in M1 and SMA during complex voluntary movement.
    Weilke F; Spiegel S; Boecker H; von Einsiedel HG; Conrad B; Schwaiger M; Erhard P
    J Neurophysiol; 2001 May; 85(5):1858-63. PubMed ID: 11353002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term training-dependent representation of individual finger movements in the primary motor cortex.
    Ogawa K; Mitsui K; Imai F; Nishida S
    Neuroimage; 2019 Nov; 202():116051. PubMed ID: 31351164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Organization of Hierarchical Motor Sequence Representations in the Human Neocortex.
    Yokoi A; Diedrichsen J
    Neuron; 2019 Sep; 103(6):1178-1190.e7. PubMed ID: 31345643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of modulation in the activity and connectivity of motor cortex during the repeated generation of movement sequences.
    Gabitov E; Manor D; Karni A
    J Cogn Neurosci; 2015 Apr; 27(4):736-51. PubMed ID: 25390206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension.
    Arbuckle SA; Weiler J; Kirk EA; Rice CL; Schieber M; Pruszynski JA; Ejaz N; Diedrichsen J
    J Neurosci; 2020 Nov; 40(48):9210-9223. PubMed ID: 33087474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.