These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34312387)

  • 21. Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides.
    Ciccarino CJ; Christensen T; Sundararaman R; Narang P
    Nano Lett; 2018 Sep; 18(9):5709-5715. PubMed ID: 30067036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.
    Del Corro E; Botello-Méndez A; Gillet Y; Elias AL; Terrones H; Feng S; Fantini C; Rhodes D; Pradhan N; Balicas L; Gonze X; Charlier JC; Terrones M; Pimenta MA
    Nano Lett; 2016 Apr; 16(4):2363-8. PubMed ID: 26998817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.
    Ding Y; Singh V; Goodman SM; Nagpal P
    J Phys Chem Lett; 2014 Dec; 5(24):4291-7. PubMed ID: 26273976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice vibration modes and electron-phonon interactions in monolayer
    Menéndez-Proupin E; Morell ES; Marques GE; Trallero-Giner C
    RSC Adv; 2024 Feb; 14(8):5234-5247. PubMed ID: 38343996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal.
    Wang X; Kaviany M; Huang B
    Nanoscale; 2017 Nov; 9(45):18022-18031. PubMed ID: 29131229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full consideration of acoustic phonon scatterings in two-dimensional Dirac materials.
    Van Nguyen K; Chang YC
    Phys Chem Chem Phys; 2020 Feb; 22(7):3999-4009. PubMed ID: 32022037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions.
    Dybała F; Polak MP; Kopaczek J; Scharoch P; Wu K; Tongay S; Kudrawiec R
    Sci Rep; 2016 May; 6():26663. PubMed ID: 27215469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron single flexural phonon relaxation, energy loss and thermopower in single and bilayer graphene in the Bloch-Gruneisen regime.
    Ansari M; Ashraf SSZ
    J Phys Condens Matter; 2018 Dec; 30(48):485501. PubMed ID: 30418954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Point Defect Limited Carrier Mobility in 2D Transition Metal Dichalcogenides.
    Xiao Z; Guo R; Zhang C; Liu Y
    ACS Nano; 2024 Mar; 18(11):8511-8516. PubMed ID: 38446825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning the Fröhlich exciton-phonon scattering in monolayer MoS
    Miller B; Lindlau J; Bommert M; Neumann A; Yamaguchi H; Holleitner A; Högele A; Wurstbauer U
    Nat Commun; 2019 Feb; 10(1):807. PubMed ID: 30778074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX
    Zulfiqar M; Zhao Y; Li G; Li Z; Ni J
    Sci Rep; 2019 Mar; 9(1):4571. PubMed ID: 30872639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moiré excitons in MoSe
    Förg M; Baimuratov AS; Kruchinin SY; Vovk IA; Scherzer J; Förste J; Funk V; Watanabe K; Taniguchi T; Högele A
    Nat Commun; 2021 Mar; 12(1):1656. PubMed ID: 33712577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing Charge Injection across Transition Metal Dichalcogenide Heterojunctions: Theory and Experiment.
    Guan J; Chuang HJ; Zhou Z; Tománek D
    ACS Nano; 2017 Apr; 11(4):3904-3910. PubMed ID: 28319662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate.
    Zhang C; Cheng L; Liu Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33621967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature Dependence of the Indirect Gap and the Direct Optical Transitions at the High-Symmetry Point of the Brillouin Zone and Band Nesting in MoS
    Kopaczek J; Zelewski S; Yumigeta K; Sailus R; Tongay S; Kudrawiec R
    J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(12):5665-5674. PubMed ID: 35392435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons.
    Zhou G; Cen C; Wang S; Deng M; Prezhdo OV
    J Phys Chem Lett; 2019 Nov; 10(22):7179-7187. PubMed ID: 31644293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological dependent exciton dynamics and thermal transport in MoSe
    Gupta JD; Jangra P; Majee BP; Mishra AK
    Nanoscale Adv; 2023 May; 5(10):2756-2766. PubMed ID: 37205289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface asymmetry induced turn-overed lifetime of acoustic phonons in monolayer MoSSe.
    Yan X; Cui X; Wang B; Yan H; Cai Y; Ke Q
    iScience; 2023 May; 26(5):106731. PubMed ID: 37216110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.