These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34312595)

  • 1. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies.
    Ashtiani MS; Aghamaleki Sarvestani A; Badri-Spröwitz A
    Front Robot AI; 2021; 8():645748. PubMed ID: 34312595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bio-Inspired Compliance Planning and Implementation Method for Hydraulically Actuated Quadruped Robots with Consideration of Ground Stiffness.
    Zhang X; Yi H; Liu J; Li Q; Luo X
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the biomimetic design of agile-robot legs.
    Garcia E; Arevalo JC; Muñoz G; Gonzalez-de-Santos P
    Sensors (Basel); 2011; 11(12):11305-34. PubMed ID: 22247667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An online learning algorithm for adapting leg stiffness and stride angle for efficient quadruped robot trotting.
    Aboufazeli M; Samare Filsoofi A; Gurney J; Meek SG; Mathews VJ
    Front Robot AI; 2023; 10():1127898. PubMed ID: 37090894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the effects of serial and parallel elasticity on a hopping robot.
    Zhao G; Mohseni O; Murcia M; Seyfarth A; Sharbafi MA
    Front Neurorobot; 2022; 16():919830. PubMed ID: 36091418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new biarticular actuator design facilitates control of leg function in BioBiped3.
    Sharbafi MA; Rode C; Kurowski S; Scholz D; Möckel R; Radkhah K; Zhao G; Rashty AM; Stryk Ov; Seyfarth A
    Bioinspir Biomim; 2016 Jul; 11(4):046003. PubMed ID: 27367459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning.
    Xiong X; Worgotter F; Manoonpong P
    IEEE Trans Cybern; 2016 Nov; 46(11):2521-2534. PubMed ID: 26441437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cerebellar-based solution to the nondeterministic time delay problem in robotic control.
    Abadía I; Naveros F; Ros E; Carrillo RR; Luque NR
    Sci Robot; 2021 Sep; 6(58):eabf2756. PubMed ID: 34516748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-source lower controller for twelve degrees of freedom hydraulic quadruped robot with distributed control scheme.
    Fang L; Zhang J; Zong H; Wang X; Zhang K; Shen J; Lu Z
    HardwareX; 2023 Mar; 13():e00393. PubMed ID: 36683606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sensor Fusion Method for Pose Estimation of C-Legged Robots.
    De León J; Cebolla R; Barrientos A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Control of Adjustable Articulated Parallel Compliant Actuation Arrangements in Articulated Robots.
    Roozing W
    Front Robot AI; 2018; 5():4. PubMed ID: 33500891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online Gain Adaptation of Whole-Body Control for Legged Robots with Unknown Disturbances.
    Lee J; Ahn J; Kim D; Bang SH; Sentis L
    Front Robot AI; 2021; 8():788902. PubMed ID: 35071334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Quadruped Robot with Three-Dimensional Flexible Legs.
    Huang W; Xiao J; Zeng F; Lu P; Lin G; Hu W; Lin X; Wu Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of bio-inspired compliant legged robot designs.
    Zhou X; Bi S
    Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and Fast Planar Jumping Control Design for a Compliant One-Legged Robot.
    Luo G; Du R; Song S; Yuan H; Huang Z; Zhou H; Gu J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.