These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 34313124)
1. Ionotronic Tough Adhesives with Intrinsic Multifunctionality. Bao G; Huo R; Ma Z; Strong M; Valiei A; Jiang S; Liu S; Mongeau L; Li J ACS Appl Mater Interfaces; 2021 Aug; 13(31):37849-37861. PubMed ID: 34313124 [TBL] [Abstract][Full Text] [Related]
2. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
3. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Wang T; Ren X; Bai Y; Liu L; Wu G Carbohydr Polym; 2021 Feb; 254():117298. PubMed ID: 33357866 [TBL] [Abstract][Full Text] [Related]
4. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Jin R; Xu J; Duan L; Gao G Carbohydr Polym; 2021 Sep; 268():118240. PubMed ID: 34127222 [TBL] [Abstract][Full Text] [Related]
5. Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors. Lv R; Bei Z; Huang Y; Chen Y; Zheng Z; You Q; Zhu C; Cao Y Macromol Rapid Commun; 2020 Jan; 41(2):e1900450. PubMed ID: 31778252 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
7. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Wang Z; Xu L; Liu W; Chen Y; Yang Q; Tang Z; Tan H; Li N; Du J; Yu M; Xu J Int J Biol Macromol; 2024 Sep; 276(Pt 1):133802. PubMed ID: 38992552 [TBL] [Abstract][Full Text] [Related]
8. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. Seong M; Kondaveeti S; Choi G; Kim S; Kim J; Kang M; Jeong HE ACS Appl Mater Interfaces; 2023 Mar; 15(8):11042-11052. PubMed ID: 36788742 [TBL] [Abstract][Full Text] [Related]
9. Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. Liu R; Cui L; Wang H; Chen Q; Guan Y; Zhang Y ACS Appl Mater Interfaces; 2021 Sep; 13(35):42052-42062. PubMed ID: 34435780 [TBL] [Abstract][Full Text] [Related]
10. Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. Xu J; Wang G; Wu Y; Ren X; Gao G ACS Appl Mater Interfaces; 2019 Jul; 11(28):25613-25623. PubMed ID: 31273992 [TBL] [Abstract][Full Text] [Related]
11. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Wang B; Dai L; Hunter LA; Zhang L; Yang G; Chen J; Zhang X; He Z; Ni Y Carbohydr Polym; 2021 Sep; 268():118210. PubMed ID: 34127214 [TBL] [Abstract][Full Text] [Related]
12. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Wang Z; Chen J; Wang L; Gao G; Zhou Y; Wang R; Xu T; Yin J; Fu J J Mater Chem B; 2019 Jan; 7(1):24-29. PubMed ID: 32254947 [TBL] [Abstract][Full Text] [Related]
13. From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors. Su G; Wang N; Liu Y; Zhang R; Li Z; Deng Y; Tang BZ Adv Mater; 2024 Jun; 36(25):e2400085. PubMed ID: 38469972 [TBL] [Abstract][Full Text] [Related]
14. A Strong and Double-sided Self-Adhesive Hydrogel Sensor. Xu R; Lai Y; Liu J; Wei Q; Sheng W; Ma S; Lei Z; Zhou F Macromol Rapid Commun; 2023 Sep; 44(17):e2300182. PubMed ID: 37294660 [TBL] [Abstract][Full Text] [Related]
15. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
16. "Casein micelle -nanoparticle double cross-linking" triggered stable adhesive, tough CA/MWCNT/PAAm hydrogel wearable strain sensors, for human motion monitoring. Xu Q; Xu X; Ma J; Zong Y; Yan K; Li P Int J Biol Macromol; 2023 May; 238():124055. PubMed ID: 36948338 [TBL] [Abstract][Full Text] [Related]
17. A tough, stretchable, adhesive and electroconductive polyacrylamide hydrogel sensor incorporated with sulfonated nanocellulose and carbon nanotubes. Deng W; Zhang Y; Wu M; Liu C; Rahmaninia M; Tang Y; Li B Int J Biol Macromol; 2024 Nov; 279(Pt 2):135165. PubMed ID: 39218191 [TBL] [Abstract][Full Text] [Related]
18. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
19. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related]
20. Design of Stretchable and Conductive Self-Adhesive Hydrogels as Flexible Sensors by Guar-Gum-Enabled Dynamic Interactions. Li Y; Liu Y; Liu H; Yu S; Ba Z; Liu M; Ma S; Xing LB Langmuir; 2024 May; 40(19):10305-10312. PubMed ID: 38696716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]