These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34313138)

  • 1. CT Osteoabsorptiometry Assessment of Subchondral Bone Density Predicts Intervertebral Implant Subsidence in a Human ACDF Cadaver Model.
    Orías AAE; Sheha E; Zavras A; John P; Fitch AA; An HS; Inoue N; Colman M
    Global Spine J; 2023 Jun; 13(5):1374-1383. PubMed ID: 34313138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computed Tomography Osteoabsorptiometry Evaluation of Cervical Endplate Subchondral Bone Mineral Density.
    Zavras AG; Dandu N; Espinoza-Orias AA; Singh K; An HS; Inoue N; Colman MW
    Global Spine J; 2023 Sep; 13(7):1803-1811. PubMed ID: 34736350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Subchondral Bone Density Distribution in the Canine C6-C7 Vertebral Endplates: A CT-OAM Study.
    Kramer V; Böttcher P
    Animals (Basel); 2023 Nov; 13(22):. PubMed ID: 38003050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of mineral density in the cervical vertebral endplates.
    Müller-Gerbl M; Weißer S; Linsenmeier U
    Eur Spine J; 2008 Mar; 17(3):432-438. PubMed ID: 18193299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed tomography osteoabsorptiometry for imaging of degenerative disc disease.
    Gay MH; Born G; Mehrkens A; Wittig H; Müller-Gerbl M
    N Am Spine Soc J; 2022 Mar; 9():100102. PubMed ID: 35243453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-Osteoabsorptiometry (CT-OAM) - a new investigation technique in the field of mummy research.
    Hirsch AC; Hotz G; Rosendahl W; Zumstein V; Rühli FJ; Müller-Gerbl M
    Anthropol Anz; 2017 Apr; 74(1):1-7. PubMed ID: 28375425
    [No Abstract]   [Full Text] [Related]  

  • 7. Cervical endplate bone density distribution measured by CT osteoabsorptiometry and direct comparison with mechanical properties of the endplate.
    Hara T; Ohara Y; Abe E; Takami K; Orías AAE; Arai H; Inoue N
    Eur Spine J; 2021 Sep; 30(9):2557-2564. PubMed ID: 34268667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vertebroplasty on endplate subsidence in elderly female spines.
    Nagaraja S; Awada HK; Dreher ML; Bouck JT; Gupta S
    J Neurosurg Spine; 2015 Mar; 22(3):273-82. PubMed ID: 25525963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dynamic Interbody Cage Improves Bone Formation in Anterior Cervical Surgery: A Porcine Biomechanical Study.
    Yang SH; Xiao FR; Lai DM; Wei CK; Tsuang FY
    Clin Orthop Relat Res; 2021 Nov; 479(11):2547-2558. PubMed ID: 34343157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantification of 3D-trabecular architecture of the fourth cervical vertebra using CT osteoabsorptiometry and micro-CT.
    Poilliot A; Gay-Dujak MH; Müller-Gerbl M
    J Orthop Surg Res; 2023 Apr; 18(1):297. PubMed ID: 37046305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new bone surrogate model for testing interbody device subsidence.
    Au AG; Aiyangar AK; Anderson PA; Ploeg HL
    Spine (Phila Pa 1976); 2011 Jul; 36(16):1289-96. PubMed ID: 21311401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of cervical endplate strength with CT measured subchondral bone density.
    Ordway NR; Lu YM; Zhang X; Cheng CC; Fang H; Fayyazi AH
    Eur Spine J; 2007 Dec; 16(12):2104-9. PubMed ID: 17712574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interbody Spacer Material Properties and Design Conformity for Reducing Subsidence During Lumbar Interbody Fusion.
    Chatham LS; Patel VV; Yakacki CM; Dana Carpenter R
    J Biomech Eng; 2017 May; 139(5):0510051-8. PubMed ID: 28334320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis.
    Hwang SH; Kayanja M; Milks RA; Benzel EC
    Spine J; 2007; 7(2):216-21. PubMed ID: 17321972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion.
    Barsa P; Suchomel P
    Eur Spine J; 2007 Sep; 16(9):1395-400. PubMed ID: 17221174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: an experimental study.
    Alkalay RN; Adamson R; Groff MW
    Spine J; 2018 Oct; 18(10):1867-1876. PubMed ID: 29526639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison of non-osteoarthritic (OA) and severe OA knees.
    Omoumi P; Babel H; Jolles BM; Favre J
    Osteoarthritis Cartilage; 2017 Nov; 25(11):1850-1857. PubMed ID: 28743608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical response of cervical vertebral endplates to axial loading.
    Schröder J; Herbort M; Rustemeyer P; Vieth V; Wassmann H
    Zentralbl Neurochir; 2006 Nov; 67(4):188-92. PubMed ID: 17106833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.