These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34313850)

  • 1. Cross-scale phenological monitoring in forest ecosystems: a content-analysis-based review.
    Reyes-González ER; Gómez-Mendoza L; Barradas VL; Terán-Cuevas ÁR
    Int J Biometeorol; 2021 Dec; 65(12):2215-2227. PubMed ID: 34313850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: advances in in situ and satellite phenological observations in Japan.
    Nagai S; Nasahara KN; Inoue T; Saitoh TM; Suzuki R
    Int J Biometeorol; 2016 Apr; 60(4):615-27. PubMed ID: 26307639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent phenological response to hydroclimate variability in forested mountain watersheds.
    Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP
    Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing.
    Chapman DS
    Glob Chang Biol; 2013 Nov; 19(11):3463-71. PubMed ID: 23661383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation.
    Ghosh S; Nandy S; Mohanty S; Subba R; Kushwaha SPS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):786. PubMed ID: 31989274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index.
    Wang C; Li J; Liu Q; Zhong B; Wu S; Xia C
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating autumn phenology derived from field observations, satellite data, and carbon flux measurements in a northern mixed forest, USA.
    Zhao B; Donnelly A; Schwartz MD
    Int J Biometeorol; 2020 May; 64(5):713-727. PubMed ID: 32072321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview.
    Kramer K; Leinonen I; Loustau D
    Int J Biometeorol; 2000 Aug; 44(2):67-75. PubMed ID: 10993560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phenological response of European vegetation to urbanisation is mediated by macrobioclimatic factors.
    Galán Díaz J; Gutiérrez-Bustillo AM; Rojo J
    Sci Total Environ; 2023 Dec; 905():167092. PubMed ID: 37716682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.
    Suepa T; Qi J; Lawawirojwong S; Messina JP
    Environ Res; 2016 May; 147():621-9. PubMed ID: 26922262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems.
    Xu X; Zhou G; Du H; Mao F; Xu L; Li X; Liu L
    Sci Total Environ; 2020 Jul; 726():137948. PubMed ID: 32481215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing.
    Richardson AD; Hufkens K; Milliman T; Frolking S
    Sci Rep; 2018 Apr; 8(1):5679. PubMed ID: 29632311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests.
    Fang J; Lutz JA; Wang L; Shugart HH; Yan X
    Glob Chang Biol; 2020 Dec; 26(12):6974-6988. PubMed ID: 32926493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index.
    Ji Z; Pan Y; Zhu X; Wang J; Li Q
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data.
    Xu X; Du H; Fan W; Hu J; Mao F; Dong H
    J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of near-surface remote sensing in monitoring the dynamics of forest canopy phenology.].
    Liu F; Wang CK; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1768-1778. PubMed ID: 29974684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.