BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34313852)

  • 1. Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.
    Chiang LC; Liao CJ; Lu CM; Wang YC
    Environ Monit Assess; 2021 Jul; 193(8):520. PubMed ID: 34313852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan.
    Chiang LC; Chuang YT; Han CC
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Variation of Sediment Export from Multiple Taiwan Watersheds.
    Chiang LC; Wang YC; Liao CJ
    Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31071953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.
    Ouyang W; Hao F; Skidmore AK; Toxopeus AG
    Sci Total Environ; 2010 Dec; 409(2):396-403. PubMed ID: 21071065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models.
    Abdelwahab OMM; Ricci GF; De Girolamo AM; Gentile F
    Environ Res; 2018 Oct; 166():363-376. PubMed ID: 29935449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.
    Nerantzaki SD; Giannakis GV; Efstathiou D; Nikolaidis NP; Sibetheros IΑ; Karatzas GP; Zacharias I
    Sci Total Environ; 2015 Dec; 538():288-97. PubMed ID: 26311584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verifying the applicability of SWAT to simulate fecal contamination for watershed management of Selangor River, Malaysia.
    Kondo T; Sakai N; Yazawa T; Shimizu Y
    Sci Total Environ; 2021 Jun; 774():145075. PubMed ID: 33609845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of surface water quality to future land cover and climate changes in the Neka River basin, Northern Iran.
    Joorabian Shooshtari S; Shayesteh K; Gholamalifard M; Azari M; López-Moreno JI
    Environ Monit Assess; 2021 Jun; 193(7):411. PubMed ID: 34114114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.
    Ozsoy G; Aksoy E; Dirim MS; Tumsavas Z
    Environ Manage; 2012 Oct; 50(4):679-94. PubMed ID: 22810626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.
    Bonumá NB; Rossi CG; Arnold JG; Reichert JM; Minella JP; Allen PM; Volk M
    J Environ Qual; 2014 Jan; 43(1):55-66. PubMed ID: 25602540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin.
    Yang S; Tan ML; Song Q; He J; Yao N; Li X; Yang X
    J Environ Manage; 2023 Mar; 330():117244. PubMed ID: 36621311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting runoff and sediment responses to climate-resilient land use and management scenarios.
    Berihun ML; Tsunekawa A; Haregeweyn N; Tsubo M; Fenta AA; Ebabu K; Bayabil HK; Dile YT
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72262-72283. PubMed ID: 37166726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating a non-reactive heavy metal simulation module into SWAT model and its application in the Athabasca oil sands region.
    Du X; Shrestha NK; Wang J
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20879-20892. PubMed ID: 31115819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pronounced Increases in Future Soil Erosion and Sediment Deposition as Influenced by Freeze-Thaw Cycles in the Upper Mississippi River Basin.
    Wang Q; Qi J; Qiu H; Li J; Cole J; Waldhoff S; Zhang X
    Environ Sci Technol; 2021 Jul; 55(14):9905-9915. PubMed ID: 34252277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid SWAT-ANN model approach for analysis of climate change impacts on sediment yield in an Eastern Himalayan sub-watershed of Brahmaputra.
    Barman S; Singh WR; Tyagi J; Sharma SK
    J Environ Manage; 2024 Jun; 365():121538. PubMed ID: 38905798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The responses of river discharge and sediment load to historical land-use/land-cover change in the Mekong River Basin.
    Sam TT; Khoi DN
    Environ Monit Assess; 2022 Aug; 194(10):700. PubMed ID: 35987970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S.
    Yuan L; Forshay KJ
    PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.