These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3431403)

  • 1. Errors in spin-lattice relaxation time measurements from restricted volumes.
    Morrone T
    Magn Reson Med; 1987 Nov; 5(5):434-42. PubMed ID: 3431403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo nuclear magnetic resonance spin-lattice relaxation time measurements from restricted volumes.
    Morrone T; Benevento J; DiMassimo R; Martino A; Orbach E; Weiss M
    Am J Physiol Imaging; 1987; 2(1):17-23. PubMed ID: 3451763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T1 measurements with clinical MR units.
    Tamura H; Yanagawa I; Hikichi T; Matsumoto K; Takahashi S; Sakamoto K
    Tohoku J Exp Med; 1995 Apr; 175(4):249-67. PubMed ID: 7570583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin lattice relaxation time measurements in two-dimensional nuclear magnetic resonance imaging: corrections for plane selection and pulse sequence.
    Rosen BR; Pykett IL; Brady TJ
    J Comput Assist Tomogr; 1984 Apr; 8(2):195-9. PubMed ID: 6323554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choice of the pulse sequence and parameters for improved signal-to-noise ratio in T1-weighted study of MRI.
    Amin N; Afzal M; Yousaf M; Javid MA
    J Pak Med Assoc; 2015 May; 65(5):512-8. PubMed ID: 26028386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-selective determination of the spin-lattice relaxation time in the rotating frame T1 rho, and T1 rho imaging.
    Rommel E; Kimmich R
    Magn Reson Med; 1989 Nov; 12(2):209-18. PubMed ID: 2615628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection.
    Garwood M; Uğurbil K; Rath AR; Bendall MR; Ross BD; Mitchell SL; Merkle H
    Magn Reson Med; 1989 Jan; 9(1):25-34. PubMed ID: 2709994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved accuracy and consistency in T1 measurement of flowing blood by using inversion recovery GE-EPI.
    Guo JY; Kim SE; Parker DL; Jeong EK; Zhang L; Roemer RB
    Med Phys; 2005 Apr; 32(4):1083-93. PubMed ID: 15895593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the precision in T1 relaxation estimation using limited flip angles.
    Wang HZ; Riederer SJ; Lee JN
    Magn Reson Med; 1987 Nov; 5(5):399-416. PubMed ID: 3431401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging.
    Low RN; Francis IR; Herfkens RJ; Jeffrey RB; Glazer GM; Foo TK; Shimakawa A; Pelc NJ
    AJR Am J Roentgenol; 1993 Mar; 160(3):501-9. PubMed ID: 8381572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast and accuracy of relaxation time measurements in acquired and synthesized multislice magnetic resonance images.
    Majumdar S; Sostman HD; MacFall JR
    Invest Radiol; 1989 Feb; 24(2):119-27. PubMed ID: 2917832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of signal-to-noise ratio in calculated T1 images derived from two spin-echo images.
    Prato FS; Drost DJ; Keys T; Laxon P; Comissiong B; Sestini E
    Magn Reson Med; 1986 Feb; 3(1):63-75. PubMed ID: 3959891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo measurement of transverse relaxation time in the mouse brain at 17.6 T.
    Kara F; Chen F; Ronen I; de Groot HJ; Matysik J; Alia A
    Magn Reson Med; 2013 Oct; 70(4):985-93. PubMed ID: 23161407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for T1 rho imaging.
    Sepponen RE; Pohjonen JA; Sipponen JT; Tanttu JI
    J Comput Assist Tomogr; 1985; 9(6):1007-11. PubMed ID: 4056129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the clinical measurement of relaxation times in magnetic resonance imaging.
    Hickey DS; Checkley D; Aspden RM; Naughton A; Jenkins JP; Isherwood I
    Br J Radiol; 1986 Jun; 59(702):565-76. PubMed ID: 3708265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method.
    Springer F; Steidle G; Martirosian P; Syha R; Claussen CD; Schick F
    Invest Radiol; 2011 Oct; 46(10):610-7. PubMed ID: 21577126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles.
    Gharehaghaji N; Oghabian MA; Sarkar S; Amirmohseni S; Ghanaati H
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4448-52. PubMed ID: 19916472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.