These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Armenta Salas M; Bashford L; Kellis S; Jafari M; Jo H; Kramer D; Shanfield K; Pejsa K; Lee B; Liu CY; Andersen RA Elife; 2018 Apr; 7():. PubMed ID: 29633714 [TBL] [Abstract][Full Text] [Related]
6. Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans. Kramer DR; Kellis S; Barbaro M; Salas MA; Nune G; Liu CY; Andersen RA; Lee B J Clin Neurosci; 2019 May; 63():116-121. PubMed ID: 30711286 [TBL] [Abstract][Full Text] [Related]
8. The functional consequences of chronic, physiologically effective intracortical microstimulation. Parker RA; Davis TS; House PA; Normann RA; Greger B Prog Brain Res; 2011; 194():145-65. PubMed ID: 21867801 [TBL] [Abstract][Full Text] [Related]
9. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. Rousche PJ; Normann RA IEEE Trans Rehabil Eng; 1999 Mar; 7(1):56-68. PubMed ID: 10188608 [TBL] [Abstract][Full Text] [Related]
10. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. McCreery D; Cogan S; Kane S; Pikov V J Neural Eng; 2016 Jun; 13(3):036012. PubMed ID: 27108712 [TBL] [Abstract][Full Text] [Related]
11. Differential expression of genes involved in the chronic response to intracortical microelectrodes. Song S; Druschel LN; Chan ER; Capadona JR Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031 [TBL] [Abstract][Full Text] [Related]
12. The Neurophysiological Representation of Imagined Somatosensory Percepts in Human Cortex. Bashford L; Rosenthal I; Kellis S; Pejsa K; Kramer D; Lee B; Liu C; Andersen RA J Neurosci; 2021 Mar; 41(10):2177-2185. PubMed ID: 33483431 [TBL] [Abstract][Full Text] [Related]
13. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. Hughes CL; Flesher SN; Weiss JM; Downey JE; Boninger M; Collinger JL; Gaunt RA J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34320481 [No Abstract] [Full Text] [Related]
14. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality. Whitsitt Q; Saxena A; Patel B; Evans BM; Hunt B; Purcell EK J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885679 [TBL] [Abstract][Full Text] [Related]
19. The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. Parker RA; Negi S; Davis T; Keefer EW; Wiggins H; House PA; Greger B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():791-4. PubMed ID: 23366011 [TBL] [Abstract][Full Text] [Related]
20. Short reaction times in response to multi-electrode intracortical microstimulation may provide a basis for rapid movement-related feedback. Sombeck JT; Miller LE J Neural Eng; 2019 Dec; 17(1):016013. PubMed ID: 31778982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]