These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 34314384)

  • 1. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 2. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956-2246 days.
    Bjånes DA; Kellis S; Nickl R; Baker B; Aflalo T; Bashford L; Chivukula S; Fifer MS; Osborn LE; Christie B; Wester BA; Celnik PA; Kramer D; Pejsa K; Crone NE; Anderson WS; Pouratian N; Lee B; Liu CY; Tenore F; Rieth L; Andersen RA
    medRxiv; 2024 Sep; ():. PubMed ID: 39314938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
    Abbott JR; Jeakle EN; Haghighi P; Usoro JO; Sturgill BS; Wu Y; Geramifard N; Radhakrishna R; Patnaik S; Nakajima S; Hess J; Mehmood Y; Devata V; Vijayakumar G; Sood A; Doan Thai TT; Dogra K; Hernandez-Reynoso AG; Pancrazio JJ; Cogan SF
    Biomaterials; 2024 Jul; 308():122543. PubMed ID: 38547834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation.
    Armenta Salas M; Bashford L; Kellis S; Jafari M; Jo H; Kramer D; Shanfield K; Pejsa K; Lee B; Liu CY; Andersen RA
    Elife; 2018 Apr; 7():. PubMed ID: 29633714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans.
    Kramer DR; Kellis S; Barbaro M; Salas MA; Nune G; Liu CY; Andersen RA; Lee B
    J Clin Neurosci; 2019 May; 63():116-121. PubMed ID: 30711286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional consequences of chronic, physiologically effective intracortical microstimulation.
    Parker RA; Davis TS; House PA; Normann RA; Greger B
    Prog Brain Res; 2011; 194():145-65. PubMed ID: 21867801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array.
    Rousche PJ; Normann RA
    IEEE Trans Rehabil Eng; 1999 Mar; 7(1):56-68. PubMed ID: 10188608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex.
    McCreery D; Cogan S; Kane S; Pikov V
    J Neural Eng; 2016 Jun; 13(3):036012. PubMed ID: 27108712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Neurophysiological Representation of Imagined Somatosensory Percepts in Human Cortex.
    Bashford L; Rosenthal I; Kellis S; Pejsa K; Kramer D; Lee B; Liu C; Andersen RA
    J Neurosci; 2021 Mar; 41(10):2177-2185. PubMed ID: 33483431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days.
    Hughes CL; Flesher SN; Weiss JM; Downey JE; Boninger M; Collinger JL; Gaunt RA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34320481
    [No Abstract]   [Full Text] [Related]  

  • 14. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality.
    Whitsitt Q; Saxena A; Patel B; Evans BM; Hunt B; Purcell EK
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex.
    Rousche PJ; Normann RA
    J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.
    Parker RA; Negi S; Davis T; Keefer EW; Wiggins H; House PA; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():791-4. PubMed ID: 23366011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short reaction times in response to multi-electrode intracortical microstimulation may provide a basis for rapid movement-related feedback.
    Sombeck JT; Miller LE
    J Neural Eng; 2019 Dec; 17(1):016013. PubMed ID: 31778982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.