BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34314527)

  • 1. Carbon Dioxide Capture Enhanced by Pre-Adsorption of Water and Methanol in UiO-66.
    Jajko G; Kozyra P; Gutiérrez-Sevillano JJ; Makowski W; Calero S
    Chemistry; 2021 Oct; 27(59):14653-14659. PubMed ID: 34314527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide adsorption to UiO-66: theoretical analysis of binding energy and NMR properties.
    Atsumi M; Zheng JJ; Tellgren E; Sakaki S; Helgaker T
    Phys Chem Chem Phys; 2023 Nov; 25(42):28770-28783. PubMed ID: 37850473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ FTIR Spectroscopy as a Tool for Investigation of Gas/Solid Interaction: Water-Enhanced CO2 Adsorption in UiO-66 Metal-Organic Framework.
    Drenchev NL; Chakarova KK; Lagunov OV; Mihaylov MY; Ivanova EZ; Strauss I; Hadjiivanov KI
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32065156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-combustion CO
    Akeeb O; Wang L; Xie W; Davis R; Alkasrawi M; Toan S
    J Environ Manage; 2022 Jul; 313():115026. PubMed ID: 35405546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.
    Ethiraj J; Albanese E; Civalleri B; Vitillo JG; Bonino F; Chavan S; Shearer GC; Lillerud KP; Bordiga S
    ChemSusChem; 2014 Dec; 7(12):3382-8. PubMed ID: 25302675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement.
    Abd AA; Othman MR; Kim J
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43329-43364. PubMed ID: 34189695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research.
    Yagmur Goren A; Erdemir D; Dincer I
    Environ Res; 2024 Jan; 240(Pt 1):117503. PubMed ID: 37907166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid fibril-UiO-66-NH
    Peydayesh M; Chen X; Vogt J; Donat F; Müller CR; Mezzenga R
    Chem Commun (Camb); 2022 Apr; 58(33):5104-5107. PubMed ID: 35388383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66.
    Ahmadijokani F; Ahmadipouya S; Molavi H; Rezakazemi M; Aminabhavi TM; Arjmand M
    J Environ Manage; 2020 Nov; 274():111155. PubMed ID: 32805472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide.
    Liu L; Zhang J; Fang H; Chen L; Su CY
    Chem Asian J; 2016 Aug; 11(16):2278-83. PubMed ID: 27332669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs).
    Sabouni R; Kazemian H; Rohani S
    Environ Sci Pollut Res Int; 2014 Apr; 21(8):5427-49. PubMed ID: 24338107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiO-66.
    Caratelli C; Hajek J; Rogge SMJ; Vandenbrande S; Meijer EJ; Waroquier M; Van Speybroeck V
    Chemphyschem; 2018 Feb; 19(4):420-429. PubMed ID: 29239511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethyleneimine-functionalized polyamide imide (Torlon) hollow-fiber sorbents for post-combustion CO2 capture.
    Li FS; Qiu W; Lively RP; Lee JS; Rownaghi AA; Koros WJ
    ChemSusChem; 2013 Jul; 6(7):1216-23. PubMed ID: 23712965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO
    Teixeira AM; Arinelli LO; de Medeiros JL; Araújo OQF
    J Environ Manage; 2019 Apr; 236():534-550. PubMed ID: 30771673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Functional Groups on Low-Concentration Carbon Dioxide Capture in
    Liang Z; Ou Y; El-Sayed EM; Su K; Wang W; Yuan D
    Inorg Chem; 2023 May; 62(21):8309-8314. PubMed ID: 37187458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing CO(2) separation ability of a metal-organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates.
    Hong DH; Suh MP
    Chemistry; 2014 Jan; 20(2):426-34. PubMed ID: 24390910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO
    Chanut N; Bourrelly S; Kuchta B; Serre C; Chang JS; Wright PA; Llewellyn PL
    ChemSusChem; 2017 Apr; 10(7):1543-1553. PubMed ID: 28252246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals.
    Li P; Shen Y; Wang D; Chen Y; Zhao Y
    Molecules; 2019 May; 24(9):. PubMed ID: 31083563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.